These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36272470)

  • 1. Is the RWGS a viable route for CO
    Portillo E; Gandara-Loe J; Reina TR; Pastor-Pérez L
    Sci Total Environ; 2023 Jan; 857(Pt 3):159394. PubMed ID: 36272470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon dioxide conversion via reverse water-gas shift reaction: Reactor design.
    Santos MF; Bresciani AE; Ferreira NL; Bassani GS; Alves RMB
    J Environ Manage; 2023 Nov; 345():118822. PubMed ID: 37597369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design of Full-Temperature-Range RWGS Catalysts: Impact of Alkali Promoters on Ni/CeO
    Gandara-Loe J; Zhang Q; Villora-Picó JJ; Sepúlveda-Escribano A; Pastor-Pérez L; Ramirez Reina T
    Energy Fuels; 2022 Jun; 36(12):6362-6373. PubMed ID: 36848300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Techno-Economic Assessment of Bio-Syngas Production for Methanol Synthesis: A Focus on the Water-Gas Shift and Carbon Capture Sections.
    Giuliano A; Freda C; Catizzone E
    Bioengineering (Basel); 2020 Jul; 7(3):. PubMed ID: 32635528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. K-Promoted Ni-Based Catalysts for Gas-Phase CO
    Gandara-Loe J; Portillo E; Odriozola JA; Reina TR; Pastor-Pérez L
    Front Chem; 2021; 9():785571. PubMed ID: 34869232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar Energy-Driven Reverse Water Gas Shift Reaction: Photothermal Effect, Photoelectric Activation and Selectivity Regulation.
    Yu J; Muhetaer A; Li Q; Xu D
    Small; 2024 Oct; 20(42):e2402952. PubMed ID: 38924254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in Hydrogenation of CO
    Zhang W; Sun J; Wang H; Cui X
    Chem Asian J; 2024 Feb; 19(4):e202300971. PubMed ID: 38278764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrical Reverse Shift: Sustainable CO
    Thor Wismann S; Larsen KE; Mølgaard Mortensen P
    Angew Chem Int Ed Engl; 2022 Feb; 61(8):e202109696. PubMed ID: 34931745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium unconstrained low-temperature CO
    Kang K; Kakihara S; Higo T; Sampei H; Saegusa K; Sekine Y
    Chem Commun (Camb); 2023 Sep; 59(74):11061-11064. PubMed ID: 37650129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turning C1-gases to isobutanol towards great environmental and economic sustainability via innovative biological routes: two birds with one stone.
    Liang B; Fu R; Ma Y; Hu L; Fei Q; Xing XH
    Biotechnol Biofuels Bioprod; 2022 Oct; 15(1):107. PubMed ID: 36221148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dry reforming of methane to syngas: a potential alternative process for value added chemicals-a techno-economic perspective.
    Mondal K; Sasmal S; Badgandi S; Chowdhury DR; Nair V
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22267-22273. PubMed ID: 26939689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Techno-economic assessment of emerging CO
    Barecka MH; Ager JW; Lapkin AA
    STAR Protoc; 2021 Dec; 2(4):100889. PubMed ID: 34723210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel process and catalytic materials for converting CO2 and H2 containing mixtures to liquid fuels and chemicals.
    Meiri N; Dinburg Y; Amoyal M; Koukouliev V; Nehemya RV; Landau MV; Herskowitz M
    Faraday Discuss; 2015; 183():197-215. PubMed ID: 26444296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient CO
    Makiura JI; Kakihara S; Higo T; Ito N; Hirano Y; Sekine Y
    Chem Commun (Camb); 2022 Apr; 58(31):4837-4840. PubMed ID: 35297931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A negative-carbon footprint process with mixed biomass feedstock maximizes conversion efficiency, product value and CO
    Jiang P; Zhao G; Liu L; Zhang H; Mu L; Lu X; Zhu J
    Bioresour Technol; 2022 May; 351():127004. PubMed ID: 35304255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Ni-based catalysts for low-temperature reverse water-gas shift (RWGS) reaction.
    Deng L; Ai X; Xie F; Zhou G
    Chem Asian J; 2021 Apr; 16(8):949-958. PubMed ID: 33646609
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An introduction of CO₂ conversion by dry reforming with methane and new route of low-temperature methanol synthesis.
    Shi L; Yang G; Tao K; Yoneyama Y; Tan Y; Tsubaki N
    Acc Chem Res; 2013 Aug; 46(8):1838-47. PubMed ID: 23459583
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-Intermetallic InNi
    Chen P; Zhao G; Shi XR; Zhu J; Ding J; Lu Y
    iScience; 2019 Jul; 17():315-324. PubMed ID: 31325770
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potassium-Promoted Molybdenum Carbide as a Highly Active and Selective Catalyst for CO
    Porosoff MD; Baldwin JW; Peng X; Mpourmpakis G; Willauer HD
    ChemSusChem; 2017 Jun; 10(11):2408-2415. PubMed ID: 28426923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in Co
    Yu F; Lin T; An Y; Gong K; Wang X; Sun Y; Zhong L
    Chem Commun (Camb); 2022 Aug; 58(70):9712-9727. PubMed ID: 35972448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.