BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36272497)

  • 21. In vivo substrates of the lens molecular chaperones αA-crystallin and αB-crystallin.
    Andley UP; Malone JP; Townsend RR
    PLoS One; 2014; 9(4):e95507. PubMed ID: 24760011
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sterol biosynthesis by a prokaryote: first in vitro identification of the genes encoding squalene epoxidase and lanosterol synthase from Methylococcus capsulatus.
    Nakano C; Motegi A; Sato T; Onodera M; Hoshino T
    Biosci Biotechnol Biochem; 2007 Oct; 71(10):2543-50. PubMed ID: 17928701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing the changes in gene expression due to α-crystallin mutations in mouse models of hereditary human cataract.
    Andley UP; Tycksen E; McGlasson-Naumann BN; Hamilton PD
    PLoS One; 2018; 13(1):e0190817. PubMed ID: 29338044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Susceptibility of ovine lens crystallins to proteolytic cleavage during formation of hereditary cataract.
    Robertson LJ; David LL; Riviere MA; Wilmarth PA; Muir MS; Morton JD
    Invest Ophthalmol Vis Sci; 2008 Mar; 49(3):1016-22. PubMed ID: 18326725
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural and functional changes in the alpha A-crystallin R116C mutant in hereditary cataracts.
    Cobb BA; Petrash JM
    Biochemistry; 2000 Dec; 39(51):15791-8. PubMed ID: 11123904
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Phosphoproteome analysis of hereditary cataractous rat lens alpha-crystallin.
    Kamei A; Takamura S; Nagai M; Takeuchi N
    Biol Pharm Bull; 2004 Dec; 27(12):1923-31. PubMed ID: 15577207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Negative charge at aspartate 151 is important for human lens αA-crystallin stability and chaperone function.
    Takata T; Matsubara T; Nakamura-Hirota T; Fujii N
    Exp Eye Res; 2019 May; 182():10-18. PubMed ID: 30849387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chaperone peptides of α-crystallin inhibit epithelial cell apoptosis, protein insolubilization, and opacification in experimental cataracts.
    Nahomi RB; Wang B; Raghavan CT; Voss O; Doseff AI; Santhoshkumar P; Nagaraj RH
    J Biol Chem; 2013 May; 288(18):13022-35. PubMed ID: 23508955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Protein-protein interactions involving congenital cataract T5P gammaC-crystallin mutant: a confocal fluorescence microscopy study.
    Liu BF; Song S; Hanson M; Liang JJ
    Exp Eye Res; 2008 Dec; 87(6):515-20. PubMed ID: 18926820
    [TBL] [Abstract][Full Text] [Related]  

  • 30. On the nature of hereditary cataract in strain 13/N guinea pigs.
    Bettelheim FA; Churchill AC; Zigler JS
    Curr Eye Res; 1997 Sep; 16(9):917-24. PubMed ID: 9288453
    [TBL] [Abstract][Full Text] [Related]  

  • 31. CRISPR/Cas9-Mediated Mutation of αA-Crystallin Gene Induces Congenital Cataracts in Rabbits.
    Yuan L; Yao H; Xu Y; Chen M; Deng J; Song Y; Sui T; Wang Y; Huang Y; Li Z; Lai L
    Invest Ophthalmol Vis Sci; 2017 May; 58(6):BIO34-BIO41. PubMed ID: 28475701
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Alterations to proteins in the lens of hereditary Crygs-mutated cataractous mice.
    Ji Y; Bi H; Li N; Jin H; Yang P; Kong X; Yan S; Lu Y
    Mol Vis; 2010 Jun; 16():1068-75. PubMed ID: 20596256
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nucleosomal association and altered interactome underlie the mechanism of cataract caused by the R54C mutation of αA-crystallin.
    Ahsan SM; Bakthisaran R; Tangirala R; Rao CM
    Biochim Biophys Acta Gen Subj; 2021 May; 1865(5):129846. PubMed ID: 33444727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Age-related changes in the water-soluble lens protein composition of Wistar and accelerated-senescence OXYS rats.
    Kopylova LV; Cherepanov IV; Snytnikova OA; Rumyantseva YV; Kolosova NG; Tsentalovich YP; Sagdeev RZ
    Mol Vis; 2011; 17():1457-67. PubMed ID: 21677790
    [TBL] [Abstract][Full Text] [Related]  

  • 35. αA-crystallin peptide SDRDKFVIFLDVKHF accumulating in aging lens impairs the function of α-crystallin and induces lens protein aggregation.
    Santhoshkumar P; Raju M; Sharma KK
    PLoS One; 2011 Apr; 6(4):e19291. PubMed ID: 21552534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cataract-causing defect of a mutant γ-crystallin proceeds through an aggregation pathway which bypasses recognition by the α-crystallin chaperone.
    Moreau KL; King JA
    PLoS One; 2012; 7(5):e37256. PubMed ID: 22655036
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergistic effects of metal ion and the pre-senile cataract-causing G98R alphaA-crystallin: self-aggregation propensities and chaperone activity.
    Singh D; Tangirala R; Bakthisaran R; Chintalagiri MR
    Mol Vis; 2009 Oct; 15():2050-60. PubMed ID: 19862354
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lanosterol synthase mutations cause cholesterol deficiency-associated cataracts in the Shumiya cataract rat.
    Mori M; Li G; Abe I; Nakayama J; Guo Z; Sawashita J; Ugawa T; Nishizono S; Serikawa T; Higuchi K; Shumiya S
    J Clin Invest; 2006 Feb; 116(2):395-404. PubMed ID: 16440058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A transgenic mouse model for human autosomal dominant cataract.
    Hsu CD; Kymes S; Petrash JM
    Invest Ophthalmol Vis Sci; 2006 May; 47(5):2036-44. PubMed ID: 16639013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.