BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36272799)

  • 1. Molecular-orbital-based machine learning for open-shell and multi-reference systems with kernel addition Gaussian process regression.
    Cheng L; Sun J; Deustua JE; Bhethanabotla VC; Miller TF
    J Chem Phys; 2022 Oct; 157(15):154105. PubMed ID: 36272799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dipole moment learning via rotationally equivariant derivative kernels in molecular-orbital-based machine learning.
    Sun J; Cheng L; Miller TF
    J Chem Phys; 2022 Sep; 157(10):104109. PubMed ID: 36109219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regression Clustering for Improved Accuracy and Training Costs with Molecular-Orbital-Based Machine Learning.
    Cheng L; Kovachki NB; Welborn M; Miller TF
    J Chem Theory Comput; 2019 Dec; 15(12):6668-6677. PubMed ID: 31638804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate Molecular-Orbital-Based Machine Learning Energies via Unsupervised Clustering of Chemical Space.
    Cheng L; Sun J; Miller TF
    J Chem Theory Comput; 2022 Aug; 18(8):4826-4835. PubMed ID: 35858242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved accuracy and transferability of molecular-orbital-based machine learning: Organics, transition-metal complexes, non-covalent interactions, and transition states.
    Husch T; Sun J; Cheng L; Lee SJR; Miller TF
    J Chem Phys; 2021 Feb; 154(6):064108. PubMed ID: 33588560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FCHL revisited: Faster and more accurate quantum machine learning.
    Christensen AS; Bratholm LA; Faber FA; Anatole von Lilienfeld O
    J Chem Phys; 2020 Jan; 152(4):044107. PubMed ID: 32007071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A universal density matrix functional from molecular orbital-based machine learning: Transferability across organic molecules.
    Cheng L; Welborn M; Christensen AS; Miller TF
    J Chem Phys; 2019 Apr; 150(13):131103. PubMed ID: 30954042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital features.
    Qiao Z; Welborn M; Anandkumar A; Manby FR; Miller TF
    J Chem Phys; 2020 Sep; 153(12):124111. PubMed ID: 33003742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast Near
    Lu F; Cheng L; DiRisio RJ; Finney JM; Boyer MA; Moonkaen P; Sun J; Lee SJR; Deustua JE; Miller TF; McCoy AB
    J Phys Chem A; 2022 Jun; 126(25):4013-4024. PubMed ID: 35715227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning for potential energy surfaces: An extensive database and assessment of methods.
    Schmitz G; Godtliebsen IH; Christiansen O
    J Chem Phys; 2019 Jun; 150(24):244113. PubMed ID: 31255074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytical gradients for molecular-orbital-based machine learning.
    Lee SJR; Husch T; Ding F; Miller TF
    J Chem Phys; 2021 Mar; 154(12):124120. PubMed ID: 33810669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An orbital-based representation for accurate quantum machine learning.
    Karandashev K; von Lilienfeld OA
    J Chem Phys; 2022 Mar; 156(11):114101. PubMed ID: 35317562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matrix of orthogonalized atomic orbital coefficients representation for radicals and ions.
    Llenga S; Gryn'ova G
    J Chem Phys; 2023 Jun; 158(21):. PubMed ID: 37265212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel machine learning insights into the QM7b and QM9 quantum mechanics datasets.
    Valdés JJ; Tchagang AB
    J Comput Chem; 2024 Jun; 45(15):1193-1214. PubMed ID: 38329198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical diversity in molecular orbital energy predictions with kernel ridge regression.
    Stuke A; Todorović M; Rupp M; Kunkel C; Ghosh K; Himanen L; Rinke P
    J Chem Phys; 2019 May; 150(20):204121. PubMed ID: 31153160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MultiXC-QM9: Large dataset of molecular and reaction energies from multi-level quantum chemical methods.
    Nandi S; Vegge T; Bhowmik A
    Sci Data; 2023 Nov; 10(1):783. PubMed ID: 37938558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing Density Functional Theory for Chemically Relevant Open-Shell Transition Metal Reactions.
    Maurer LR; Bursch M; Grimme S; Hansen A
    J Chem Theory Comput; 2021 Oct; 17(10):6134-6151. PubMed ID: 34546754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate Prediction of Three-Body Intermolecular Interactions via Electron Deformation Density-Based Machine Learning.
    Low K; Coote ML; Izgorodina EI
    J Chem Theory Comput; 2023 Mar; 19(5):1466-1475. PubMed ID: 36787280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kernel based quantum machine learning at record rate: Many-body distribution functionals as compact representations.
    Khan D; Heinen S; von Lilienfeld OA
    J Chem Phys; 2023 Jul; 159(3):. PubMed ID: 37462285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphical Gaussian process regression model for aqueous solvation free energy prediction of organic molecules in redox flow batteries.
    Gao P; Yang X; Tang YH; Zheng M; Andersen A; Murugesan V; Hollas A; Wang W
    Phys Chem Chem Phys; 2021 Nov; 23(43):24892-24904. PubMed ID: 34724700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.