BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 36272801)

  • 1. Solid-state synthesis of UV-plasmonic Cr
    Karaballi RA; Monfared YE; Bicket IC; Coridan RH; Dasog M
    J Chem Phys; 2022 Oct; 157(15):154706. PubMed ID: 36272801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localized surface plasmon resonances in aluminum nanodisks.
    Langhammer C; Schwind M; Kasemo B; Zorić I
    Nano Lett; 2008 May; 8(5):1461-71. PubMed ID: 18393471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localized and propagating plasmons in metal films with nanoholes.
    Schwind M; Kasemo B; Zorić I
    Nano Lett; 2013 Apr; 13(4):1743-50. PubMed ID: 23484456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gold-copper oxide core-shell plasmonic nanoparticles: the effect of pH on shell stability and mechanistic insights into shell formation.
    Bartolucci SF; Leff AC; Maurer JA
    Nanoscale Adv; 2024 Apr; 6(9):2499-2507. PubMed ID: 38694468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overview of Synthetic Methods to Prepare Plasmonic Transition-Metal Nitride Nanoparticles.
    Karaballi RA; Monfared YE; Dasog M
    Chemistry; 2020 Jul; 26(39):8499-8505. PubMed ID: 32068296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refractive index susceptibility of the plasmonic palladium nanoparticle: potential as the third plasmonic sensing material.
    Sugawa K; Tahara H; Yamashita A; Otsuki J; Sagara T; Harumoto T; Yanagida S
    ACS Nano; 2015 Feb; 9(2):1895-904. PubMed ID: 25629586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ferroplasmons: intense localized surface plasmons in metal-ferromagnetic nanoparticles.
    Sachan R; Malasi A; Ge J; Yadavali S; Krishna H; Gangopadhyay A; Garcia H; Duscher G; Kalyanaraman R
    ACS Nano; 2014 Oct; 8(10):9790-8. PubMed ID: 25068441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Titanium Nitride Tubes Decorated with Ru Nanoparticles as Photo-Thermal Catalyst for CO
    Mateo D; Navarro JC; Khan IS; Ruiz-Martinez J; Gascon J
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithography-Free Fabrication of Silica Nanocylinders with Suspended Gold Nanorings for LSPR-Based Sensing.
    Thilsted AH; Pan JY; Wu K; Zór K; Rindzevicius T; Schmidt MS; Boisen A
    Small; 2016 Dec; 12(48):6745-6752. PubMed ID: 27709773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of core dielectric properties on the localized surface plasmonic spectra of gold-coated magnetic core-shell nanoparticles.
    Chaffin EA; Bhana S; O'Connor RT; Huang X; Wang Y
    J Phys Chem B; 2014 Dec; 118(49):14076-84. PubMed ID: 25010347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic properties of polycrystalline hollow Au nanoparticles: a surface roughness effect.
    Huang C; Hao Y
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3701-5. PubMed ID: 21776758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Plasmonic Group-4 Nitride Nanocrystals by Solid-State Metathesis.
    Karaballi RA; Humagain G; Fleischman BRA; Dasog M
    Angew Chem Int Ed Engl; 2019 Mar; 58(10):3147-3150. PubMed ID: 30645033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmonic Nanoassemblies: Tentacles Beat Satellites for Boosting Broadband NIR Plasmon Coupling Providing a Novel Candidate for SERS and Photothermal Therapy.
    Dey P; Tabish TA; Mosca S; Palombo F; Matousek P; Stone N
    Small; 2020 Mar; 16(10):e1906780. PubMed ID: 31997560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Stable Plasmonic Cu@Cu
    Lou Y; Zhang Y; Cheng L; Chen J; Zhao Y
    ChemSusChem; 2018 May; 11(9):1505-1511. PubMed ID: 29528560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep ultraviolet plasmon resonance in aluminum nanoparticle arrays.
    Maidecchi G; Gonella G; Proietti Zaccaria R; Moroni R; Anghinolfi L; Giglia A; Nannarone S; Mattera L; Dai HL; Canepa M; Bisio F
    ACS Nano; 2013 Jul; 7(7):5834-41. PubMed ID: 23725571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Hybrid Nanostructures in Photocatalysis: Structures, Mechanisms, and Applications.
    Ninakanti R; Dingenen F; Borah R; Peeters H; Verbruggen SW
    Top Curr Chem (Cham); 2022 Aug; 380(5):40. PubMed ID: 35951165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells.
    Jain PK; El-Sayed MA
    Nano Lett; 2007 Sep; 7(9):2854-8. PubMed ID: 17676810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing.
    Loiseau A; Asila V; Boitel-Aullen G; Lam M; Salmain M; Boujday S
    Biosensors (Basel); 2019 Jun; 9(2):. PubMed ID: 31185689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.