These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 36273024)
1. Comparison of three-dimensional body centre of mass trajectories during locomotion through zero- and one-dimensional statistics. Luciano F; Ruggiero L; Minetti A; Pavei G Sci Rep; 2022 Oct; 12(1):17777. PubMed ID: 36273024 [TBL] [Abstract][Full Text] [Related]
2. Rocker-profile design shoes improve pendular energy recovery in walking with no effects on total mechanical work. Ruggiero L; Carpi M; Minetti AE J Biomech; 2022 Nov; 144():111345. PubMed ID: 36283145 [TBL] [Abstract][Full Text] [Related]
3. On the Estimation Accuracy of the 3D Body Center of Mass Trajectory during Human Locomotion: Inverse vs. Forward Dynamics. Pavei G; Seminati E; Cazzola D; Minetti AE Front Physiol; 2017; 8():129. PubMed ID: 28337148 [TBL] [Abstract][Full Text] [Related]
4. Body center of mass trajectory and mechanical energy using inertial sensors: a feasible stride? Pavei G; Salis F; Cereatti A; Bergamini E Gait Posture; 2020 Jul; 80():199-205. PubMed ID: 32526617 [TBL] [Abstract][Full Text] [Related]
5. Comparison of kinematic and kinetic methods for computing the vertical motion of the body center of mass during walking. Gard SA; Miff SC; Kuo AD Hum Mov Sci; 2004 Apr; 22(6):597-610. PubMed ID: 15063043 [TBL] [Abstract][Full Text] [Related]
6. Control of center of mass during gait of stroke patients: Statistical parametric mapping analysis. Cicarello NDS; Bohrer RCD; Devetak GF; Rodacki ALF; Loureiro APC; Manffra EF Clin Biomech (Bristol, Avon); 2023 Jul; 107():106005. PubMed ID: 37302301 [TBL] [Abstract][Full Text] [Related]
7. A New Quantitative Gait Analysis Method Based on Oscillatory Mechanical Energies Measured near Body Center of Mass. Cheung D; Cheung J; Cheung V; Jin L Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433260 [TBL] [Abstract][Full Text] [Related]
8. Sample size estimation in locomotion kinematics and electromyography for statistical parametric mapping. Luciano F; Ruggiero L; Pavei G J Biomech; 2021 Jun; 122():110481. PubMed ID: 33933861 [TBL] [Abstract][Full Text] [Related]
9. Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis. Pataky TC; Vanrenterghem J; Robinson MA J Biomech; 2015 May; 48(7):1277-85. PubMed ID: 25817475 [TBL] [Abstract][Full Text] [Related]
10. Parameters that remain consistent independent of pausing before gait-initiation during normal rise-to-walk behaviour delineated by sit-to-walk and sit-to-stand-and-walk. Jones GD; James DC; Thacker M; Green DA PLoS One; 2018; 13(10):e0205346. PubMed ID: 30300414 [TBL] [Abstract][Full Text] [Related]
11. The use of a single sacral marker method to approximate the centre of mass trajectory during treadmill running. Napier C; Jiang X; MacLean CL; Menon C; Hunt MA J Biomech; 2020 Jul; 108():109886. PubMed ID: 32636000 [TBL] [Abstract][Full Text] [Related]
12. The body center of mass in primates: Is it more caudal than in other quadrupedal mammals? Druelle F; Berthet M; Quintard B Am J Phys Anthropol; 2019 May; 169(1):170-178. PubMed ID: 30839107 [TBL] [Abstract][Full Text] [Related]
13. Interactions between posture and locomotion: motor patterns in humans walking with bent posture versus erect posture. Grasso R; Zago M; Lacquaniti F J Neurophysiol; 2000 Jan; 83(1):288-300. PubMed ID: 10634872 [TBL] [Abstract][Full Text] [Related]
15. The probability of false positives in zero-dimensional analyses of one-dimensional kinematic, force and EMG trajectories. Pataky TC; Vanrenterghem J; Robinson MA J Biomech; 2016 Jun; 49(9):1468-1476. PubMed ID: 27067363 [TBL] [Abstract][Full Text] [Related]
16. Self-paced and fixed speed treadmill walking yield similar energetics and biomechanics across different speeds. Theunissen K; Van Hooren B; Plasqui G; Meijer K Gait Posture; 2022 Feb; 92():2-7. PubMed ID: 34801952 [TBL] [Abstract][Full Text] [Related]
17. Speed- and mode-dependent modulation of the center of mass trajectory in human gaits as revealed by Lissajous curves. Takiyama K; Yokoyama H; Kaneko N; Nakazawa K J Biomech; 2020 Sep; 110():109947. PubMed ID: 32827767 [TBL] [Abstract][Full Text] [Related]
18. The mathematical description of the body centre of mass 3D path in human and animal locomotion. Minetti AE; Cisotti C; Mian OS J Biomech; 2011 May; 44(8):1471-7. PubMed ID: 21463861 [TBL] [Abstract][Full Text] [Related]
19. Vector field statistics for objective center-of-pressure trajectory analysis during gait, with evidence of scalar sensitivity to small coordinate system rotations. Pataky TC; Robinson MA; Vanrenterghem J; Savage R; Bates KT; Crompton RH Gait Posture; 2014; 40(1):255-8. PubMed ID: 24726191 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional acceleration of the body center of mass in people with transfemoral amputation: Identification of a minimal body segment network. Simonetti E; Bergamini E; Bascou J; Vannozzi G; Pillet H Gait Posture; 2021 Oct; 90():129-136. PubMed ID: 34455201 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]