BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

439 related articles for article (PubMed ID: 36273178)

  • 21. Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1.
    Peyraud R; Schneider K; Kiefer P; Massou S; Vorholt JA; Portais JC
    BMC Syst Biol; 2011 Nov; 5():189. PubMed ID: 22074569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A synthetic methylotrophic
    Reiter MA; Bradley T; Büchel LA; Keller P; Hegedis E; Gassler T; Vorholt JA
    Nat Catal; 2024; 7(5):560-573. PubMed ID: 38828428
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expanding the promoter toolbox for metabolic engineering of methylotrophic yeasts.
    Yan C; Yu W; Yao L; Guo X; Zhou YJ; Gao J
    Appl Microbiol Biotechnol; 2022 May; 106(9-10):3449-3464. PubMed ID: 35538374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae.
    Espinosa MI; Gonzalez-Garcia RA; Valgepea K; Plan MR; Scott C; Pretorius IS; Marcellin E; Paulsen IT; Williams TC
    Nat Commun; 2020 Nov; 11(1):5564. PubMed ID: 33149159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth of E. coli on formate and methanol via the reductive glycine pathway.
    Kim S; Lindner SN; Aslan S; Yishai O; Wenk S; Schann K; Bar-Even A
    Nat Chem Biol; 2020 May; 16(5):538-545. PubMed ID: 32042198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Methanol-based biomanufacturing of fuels and chemicals using native and synthetic methylotrophs.
    Sarwar A; Lee EY
    Synth Syst Biotechnol; 2023 Sep; 8(3):396-415. PubMed ID: 37384124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Methylobacterium extorquens: methylotrophy and biotechnological applications.
    Ochsner AM; Sonntag F; Buchhaupt M; Schrader J; Vorholt JA
    Appl Microbiol Biotechnol; 2015 Jan; 99(2):517-34. PubMed ID: 25432674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioconversion of Methanol into Value-added Chemicals in Native and Synthetic Methylotrophs.
    Zhang M; Yuan XJ; Zhang C; Zhu LP; Mo XH; Chen WJ; Yang S
    Curr Issues Mol Biol; 2019; 33():225-236. PubMed ID: 31166195
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The potential and capability of the methylotrophic yeast Ogataea methanolica in a "methanol bioeconomy".
    Cai HL; Shimada M; Nakagawa T
    Yeast; 2022 Aug; 39(8):440-448. PubMed ID: 35811458
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph.
    Bennett RK; Gonzalez JE; Whitaker WB; Antoniewicz MR; Papoutsakis ET
    Metab Eng; 2018 Jan; 45():75-85. PubMed ID: 29203223
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methylotrophic Yeasts: Current Understanding of Their C1-Metabolism and its Regulation by Sensing Methanol for Survival on Plant Leaves.
    Yurimoto H; Sakai Y
    Curr Issues Mol Biol; 2019; 33():197-210. PubMed ID: 31166193
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineering the methylotrophic yeast
    Wefelmeier K; Schmitz S; Haut AM; Otten J; Jülich T; Blank LM
    Front Bioeng Biotechnol; 2023; 11():1223726. PubMed ID: 37456718
    [No Abstract]   [Full Text] [Related]  

  • 33. Synergistic investigation of natural and synthetic C1-trophic microorganisms to foster a circular carbon economy.
    Orsi E; Nikel PI; Nielsen LK; Donati S
    Nat Commun; 2023 Oct; 14(1):6673. PubMed ID: 37865689
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Benchmarking two
    Espinosa MI; Williams TC; Pretorius IS; Paulsen IT
    Synth Syst Biotechnol; 2019 Dec; 4(4):180-188. PubMed ID: 31667368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism.
    Yurimoto H; Kato N; Sakai Y
    Chem Rec; 2005; 5(6):367-75. PubMed ID: 16278835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of Protein Complexes in Non-methylotrophic and Methylotrophic Yeasts : Nonmethylotrophic and Methylotrophic Yeasts.
    Fernández FJ; López-Estepa M; Querol-García J; Vega MC
    Adv Exp Med Biol; 2016; 896():137-53. PubMed ID: 27165323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increasing lysine level improved methanol assimilation toward butyric acid production in Butyribacterium methylotrophicum.
    Wang J; Liao Y; Qin J; Ma C; Jin Y; Wang X; Chen K; Ouyang P
    Biotechnol Biofuels Bioprod; 2023 Jan; 16(1):10. PubMed ID: 36650609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unraveling the potential of non-conventional yeasts in biotechnology.
    Geijer C; Ledesma-Amaro R; Tomás-Pejó E
    FEMS Yeast Res; 2022 Jan; 22(1):. PubMed ID: 35040953
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthetic Biology Applied to Carbon Conservative and Carbon Dioxide Recycling Pathways.
    François JM; Lachaux C; Morin N
    Front Bioeng Biotechnol; 2019; 7():446. PubMed ID: 31998710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.