These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 36273343)

  • 1. Enhance Fracture Toughness and Fatigue Resistance of Hydrogels by Reversible Alignment of Nanofibers.
    Sun D; Gao Y; Zhou Y; Yang M; Hu J; Lu T; Wang T
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):49389-49397. PubMed ID: 36273343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tough and fatigue-resistant polymer networks by crack tip softening.
    Liu B; Yin T; Zhu J; Zhao D; Yu H; Qu S; Yang W
    Proc Natl Acad Sci U S A; 2023 Feb; 120(6):e2217781120. PubMed ID: 36716369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanically Viscoelastic Properties of Cellulose Nanocrystals Skeleton Reinforced Hierarchical Composite Hydrogels.
    Yang J; Han C
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25621-30. PubMed ID: 27606621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration.
    Fang J; Li P; Lu X; Fang L; Lü X; Ren F
    Acta Biomater; 2019 Apr; 88():503-513. PubMed ID: 30772515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deformation Drives Alignment of Nanofibers in Framework for Inducing Anisotropic Cellulose Hydrogels with High Toughness.
    Ye D; Cheng Q; Zhang Q; Wang Y; Chang C; Li L; Peng H; Zhang L
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43154-43162. PubMed ID: 29161020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simple approach to reinforce hydrogels with cellulose nanocrystals.
    Yang J; Han CR; Xu F; Sun RC
    Nanoscale; 2014 Jun; 6(11):5934-43. PubMed ID: 24763379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterning of Structurally Anisotropic Composite Hydrogel Sheets.
    Prince E; Alizadehgiashi M; Campbell M; Khuu N; Albulescu A; De France K; Ratkov D; Li Y; Hoare T; Kumacheva E
    Biomacromolecules; 2018 Apr; 19(4):1276-1284. PubMed ID: 29505709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic cellulose nanocrystal hydrogel with multi-stimuli response to temperature and mechanical stress.
    Liu L; Tanguy NR; Yan N; Wu Y; Liu X; Qing Y
    Carbohydr Polym; 2022 Mar; 280():119005. PubMed ID: 35027120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid pectin-Fe
    Niu R; Qin Z; Ji F; Xu M; Tian X; Li J; Yao F
    Soft Matter; 2017 Dec; 13(48):9237-9245. PubMed ID: 29199306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injectable Anisotropic Nanocomposite Hydrogels Direct in Situ Growth and Alignment of Myotubes.
    De France KJ; Yager KG; Chan KJW; Corbett B; Cranston ED; Hoare T
    Nano Lett; 2017 Oct; 17(10):6487-6495. PubMed ID: 28956933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Facile Approach for Anisotropic Hydrogel with Light-Regulated Stiffness and Its Application to Achieve Mechanical Toughening.
    Gao Y; Wang P; Zhao F; Liu X; Wu J; Hu J
    Macromol Rapid Commun; 2022 May; 43(10):e2200077. PubMed ID: 35298857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fracture Toughness and Fatigue Threshold of Tough Hydrogels.
    Zhang W; Hu J; Tang J; Wang Z; Wang J; Lu T; Suo Z
    ACS Macro Lett; 2019 Jan; 8(1):17-23. PubMed ID: 35619405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synergistic Reinforcing Mechanisms in Cellulose Nanofibrils Composite Hydrogels: Interfacial Dynamics, Energy Dissipation, and Damage Resistance.
    Yang J; Xu F
    Biomacromolecules; 2017 Aug; 18(8):2623-2632. PubMed ID: 28686432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong and tough nanofibrous hydrogel composites based on biomimetic principles.
    Tonsomboon K; Butcher AL; Oyen ML
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():220-227. PubMed ID: 28024580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unbreakable Hydrogels with Self-Recoverable 10 200% Stretchability.
    Tan S; Wang C; Yang B; Luo J; Wu Y
    Adv Mater; 2022 Oct; 34(40):e2206904. PubMed ID: 36000832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle-Inspired Highly Anisotropic, Strong, Ion-Conductive Hydrogels.
    Kong W; Wang C; Jia C; Kuang Y; Pastel G; Chen C; Chen G; He S; Huang H; Zhang J; Wang S; Hu L
    Adv Mater; 2018 Sep; 30(39):e1801934. PubMed ID: 30101467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double network hydrogels with highly enhanced toughness based on a modified first network.
    Liang J; Shan G; Pan P
    Soft Matter; 2017 Jun; 13(22):4148-4158. PubMed ID: 28555697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocage Ferritin Reinforced Polyacrylamide Hydrogel for Wearable Flexible Strain Sensors.
    Wang R; Chi W; Wan F; Wei J; Ping H; Zou Z; Xie J; Wang W; Fu Z
    ACS Appl Mater Interfaces; 2022 May; 14(18):21278-21286. PubMed ID: 35471924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fatigue Fracture of Self-Recovery Hydrogels.
    Bai R; Yang J; Morelle XP; Yang C; Suo Z
    ACS Macro Lett; 2018 Mar; 7(3):312-317. PubMed ID: 35632906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired 2D Isotropically Fatigue-Resistant Hydrogels.
    Liang X; Chen G; Lin S; Zhang J; Wang L; Zhang P; Lan Y; Liu J
    Adv Mater; 2022 Feb; 34(8):e2107106. PubMed ID: 34888962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.