These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Time-resolved analysis of amino acid stress identifies eIF2 phosphorylation as necessary to inhibit mTORC1 activity in liver. Nikonorova IA; Mirek ET; Signore CC; Goudie MP; Wek RC; Anthony TG J Biol Chem; 2018 Apr; 293(14):5005-5015. PubMed ID: 29449374 [TBL] [Abstract][Full Text] [Related]
3. Phosphorylation of GCN2 by mTOR confers adaptation to conditions of hyper-mTOR activation under stress. Darawshi O; Yassin O; Shmuel M; Wek RC; Mahdizadeh SJ; Eriksson LA; Hatzoglou M; Tirosh B J Biol Chem; 2024 Aug; 300(8):107575. PubMed ID: 39013537 [TBL] [Abstract][Full Text] [Related]
4. GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism. Averous J; Lambert-Langlais S; Mesclon F; Carraro V; Parry L; Jousse C; Bruhat A; Maurin AC; Pierre P; Proud CG; Fafournoux P Sci Rep; 2016 Jun; 6():27698. PubMed ID: 27297692 [TBL] [Abstract][Full Text] [Related]
5. GCN2- and eIF2α-phosphorylation-independent, but ATF4-dependent, induction of CARE-containing genes in methionine-deficient cells. Mazor KM; Stipanuk MH Amino Acids; 2016 Dec; 48(12):2831-2842. PubMed ID: 27613409 [TBL] [Abstract][Full Text] [Related]
6. Translational control during endoplasmic reticulum stress beyond phosphorylation of the translation initiation factor eIF2α. Guan BJ; Krokowski D; Majumder M; Schmotzer CL; Kimball SR; Merrick WC; Koromilas AE; Hatzoglou M J Biol Chem; 2014 May; 289(18):12593-611. PubMed ID: 24648524 [TBL] [Abstract][Full Text] [Related]
7. GZD824 Inhibits GCN2 and Sensitizes Cancer Cells to Amino Acid Starvation Stress. Kato Y; Kunimasa K; Takahashi M; Harada A; Nagasawa I; Osawa M; Sugimoto Y; Tomida A Mol Pharmacol; 2020 Dec; 98(6):669-676. PubMed ID: 33033108 [TBL] [Abstract][Full Text] [Related]
8. Obesity challenges the hepatoprotective function of the integrated stress response to asparaginase exposure in mice. Nikonorova IA; Al-Baghdadi RJT; Mirek ET; Wang Y; Goudie MP; Wetstein BB; Dixon JL; Hine C; Mitchell JR; Adams CM; Wek RC; Anthony TG J Biol Chem; 2017 Apr; 292(16):6786-6798. PubMed ID: 28242759 [TBL] [Abstract][Full Text] [Related]
9. The tRNA-GCN2-FBXO22-axis-mediated mTOR ubiquitination senses amino acid insufficiency. Ge MK; Zhang C; Zhang N; He P; Cai HY; Li S; Wu S; Chu XL; Zhang YX; Ma HM; Xia L; Yang S; Yu JX; Yao SY; Zhou XL; Su B; Chen GQ; Shen SM Cell Metab; 2023 Dec; 35(12):2216-2230.e8. PubMed ID: 37979583 [TBL] [Abstract][Full Text] [Related]
10. Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2. Anthony TG; McDaniel BJ; Byerley RL; McGrath BC; Cavener DR; McNurlan MA; Wek RC J Biol Chem; 2004 Aug; 279(35):36553-61. PubMed ID: 15213227 [TBL] [Abstract][Full Text] [Related]
11. Crosstalk between the Tor and Gcn2 pathways in response to different stresses. Rødland GE; Tvegård T; Boye E; Grallert B Cell Cycle; 2014; 13(3):453-61. PubMed ID: 24280780 [TBL] [Abstract][Full Text] [Related]
12. The amino acid sensor GCN2 suppresses terminal oligopyrimidine (TOP) mRNA translation via La-related protein 1 (LARP1). Farooq Z; Kusuma F; Burke P; Dufour CR; Lee D; Tabatabaei N; Toboz P; Radovani E; Greenblatt JF; Rehman J; Class J; Khoutorsky A; Fonseca BD; Richner JM; Mercier E; Bourque G; Giguère V; Subramaniam AR; Han J; Tahmasebi S J Biol Chem; 2022 Sep; 298(9):102277. PubMed ID: 35863436 [TBL] [Abstract][Full Text] [Related]
13. Control of the translational machinery by amino acids. Proud CG Am J Clin Nutr; 2014 Jan; 99(1):231S-236S. PubMed ID: 24284441 [TBL] [Abstract][Full Text] [Related]
14. Differential requirements for P stalk components in activating yeast protein kinase Gcn2 by stalled ribosomes during stress. Gupta R; Hinnebusch AG Proc Natl Acad Sci U S A; 2023 Apr; 120(16):e2300521120. PubMed ID: 37043534 [TBL] [Abstract][Full Text] [Related]
15. The Gcn2-eIF2α pathway connects iron and amino acid homeostasis in Caballero-Molada M; Planes MD; Benlloch H; Atares S; Naranjo MA; Serrano R Biochem J; 2018 Apr; 475(8):1523-1534. PubMed ID: 29626156 [TBL] [Abstract][Full Text] [Related]
16. Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma. Wengrod J; Wang D; Weiss S; Zhong H; Osman I; Gardner LB Sci Signal; 2015 Mar; 8(367):ra27. PubMed ID: 25759478 [TBL] [Abstract][Full Text] [Related]
17. Asp56 in actin is critical for the full activity of the amino acid starvation-responsive kinase Gcn2. Ramesh R; Dautel M; Lee Y; Kim Y; Storey K; Gottfried S; Goss Kinzy T; Huh WK; Sattlegger E FEBS Lett; 2021 Jul; 595(14):1886-1901. PubMed ID: 34096057 [TBL] [Abstract][Full Text] [Related]
18. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2. Ye J; Palm W; Peng M; King B; Lindsten T; Li MO; Koumenis C; Thompson CB Genes Dev; 2015 Nov; 29(22):2331-6. PubMed ID: 26543160 [TBL] [Abstract][Full Text] [Related]
19. Receptor for activated C-kinase (RACK1) homolog Cpc2 facilitates the general amino acid control response through Gcn2 kinase in fission yeast. Tarumoto Y; Kanoh J; Ishikawa F J Biol Chem; 2013 Jun; 288(26):19260-8. PubMed ID: 23671279 [TBL] [Abstract][Full Text] [Related]
20. Fission yeast TORC1 prevents eIF2α phosphorylation in response to nitrogen and amino acids via Gcn2 kinase. Valbuena N; Rozalén AE; Moreno S J Cell Sci; 2012 Dec; 125(Pt 24):5955-9. PubMed ID: 23108671 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]