BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 36273589)

  • 1. A cell-based chemical-genetic screen for amino acid stress response inhibitors reveals torins reverse stress kinase GCN2 signaling.
    Brüggenthies JB; Fiore A; Russier M; Bitsina C; Brötzmann J; Kordes S; Menninger S; Wolf A; Conti E; Eickhoff JE; Murray PJ
    J Biol Chem; 2022 Dec; 298(12):102629. PubMed ID: 36273589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-resolved analysis of amino acid stress identifies eIF2 phosphorylation as necessary to inhibit mTORC1 activity in liver.
    Nikonorova IA; Mirek ET; Signore CC; Goudie MP; Wek RC; Anthony TG
    J Biol Chem; 2018 Apr; 293(14):5005-5015. PubMed ID: 29449374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GCN2 contributes to mTORC1 inhibition by leucine deprivation through an ATF4 independent mechanism.
    Averous J; Lambert-Langlais S; Mesclon F; Carraro V; Parry L; Jousse C; Bruhat A; Maurin AC; Pierre P; Proud CG; Fafournoux P
    Sci Rep; 2016 Jun; 6():27698. PubMed ID: 27297692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GCN2- and eIF2α-phosphorylation-independent, but ATF4-dependent, induction of CARE-containing genes in methionine-deficient cells.
    Mazor KM; Stipanuk MH
    Amino Acids; 2016 Dec; 48(12):2831-2842. PubMed ID: 27613409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Translational control during endoplasmic reticulum stress beyond phosphorylation of the translation initiation factor eIF2α.
    Guan BJ; Krokowski D; Majumder M; Schmotzer CL; Kimball SR; Merrick WC; Koromilas AE; Hatzoglou M
    J Biol Chem; 2014 May; 289(18):12593-611. PubMed ID: 24648524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GZD824 Inhibits GCN2 and Sensitizes Cancer Cells to Amino Acid Starvation Stress.
    Kato Y; Kunimasa K; Takahashi M; Harada A; Nagasawa I; Osawa M; Sugimoto Y; Tomida A
    Mol Pharmacol; 2020 Dec; 98(6):669-676. PubMed ID: 33033108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Obesity challenges the hepatoprotective function of the integrated stress response to asparaginase exposure in mice.
    Nikonorova IA; Al-Baghdadi RJT; Mirek ET; Wang Y; Goudie MP; Wetstein BB; Dixon JL; Hine C; Mitchell JR; Adams CM; Wek RC; Anthony TG
    J Biol Chem; 2017 Apr; 292(16):6786-6798. PubMed ID: 28242759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tRNA-GCN2-FBXO22-axis-mediated mTOR ubiquitination senses amino acid insufficiency.
    Ge MK; Zhang C; Zhang N; He P; Cai HY; Li S; Wu S; Chu XL; Zhang YX; Ma HM; Xia L; Yang S; Yu JX; Yao SY; Zhou XL; Su B; Chen GQ; Shen SM
    Cell Metab; 2023 Dec; 35(12):2216-2230.e8. PubMed ID: 37979583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preservation of liver protein synthesis during dietary leucine deprivation occurs at the expense of skeletal muscle mass in mice deleted for eIF2 kinase GCN2.
    Anthony TG; McDaniel BJ; Byerley RL; McGrath BC; Cavener DR; McNurlan MA; Wek RC
    J Biol Chem; 2004 Aug; 279(35):36553-61. PubMed ID: 15213227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosstalk between the Tor and Gcn2 pathways in response to different stresses.
    Rødland GE; Tvegård T; Boye E; Grallert B
    Cell Cycle; 2014; 13(3):453-61. PubMed ID: 24280780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The amino acid sensor GCN2 suppresses terminal oligopyrimidine (TOP) mRNA translation via La-related protein 1 (LARP1).
    Farooq Z; Kusuma F; Burke P; Dufour CR; Lee D; Tabatabaei N; Toboz P; Radovani E; Greenblatt JF; Rehman J; Class J; Khoutorsky A; Fonseca BD; Richner JM; Mercier E; Bourque G; Giguère V; Subramaniam AR; Han J; Tahmasebi S
    J Biol Chem; 2022 Sep; 298(9):102277. PubMed ID: 35863436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of the translational machinery by amino acids.
    Proud CG
    Am J Clin Nutr; 2014 Jan; 99(1):231S-236S. PubMed ID: 24284441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential requirements for P stalk components in activating yeast protein kinase Gcn2 by stalled ribosomes during stress.
    Gupta R; Hinnebusch AG
    Proc Natl Acad Sci U S A; 2023 Apr; 120(16):e2300521120. PubMed ID: 37043534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Gcn2-eIF2α pathway connects iron and amino acid homeostasis in
    Caballero-Molada M; Planes MD; Benlloch H; Atares S; Naranjo MA; Serrano R
    Biochem J; 2018 Apr; 475(8):1523-1534. PubMed ID: 29626156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of eIF2α triggered by mTORC1 inhibition and PP6C activation is required for autophagy and is aberrant in PP6C-mutated melanoma.
    Wengrod J; Wang D; Weiss S; Zhong H; Osman I; Gardner LB
    Sci Signal; 2015 Mar; 8(367):ra27. PubMed ID: 25759478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asp56 in actin is critical for the full activity of the amino acid starvation-responsive kinase Gcn2.
    Ramesh R; Dautel M; Lee Y; Kim Y; Storey K; Gottfried S; Goss Kinzy T; Huh WK; Sattlegger E
    FEBS Lett; 2021 Jul; 595(14):1886-1901. PubMed ID: 34096057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GCN2 sustains mTORC1 suppression upon amino acid deprivation by inducing Sestrin2.
    Ye J; Palm W; Peng M; King B; Lindsten T; Li MO; Koumenis C; Thompson CB
    Genes Dev; 2015 Nov; 29(22):2331-6. PubMed ID: 26543160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptor for activated C-kinase (RACK1) homolog Cpc2 facilitates the general amino acid control response through Gcn2 kinase in fission yeast.
    Tarumoto Y; Kanoh J; Ishikawa F
    J Biol Chem; 2013 Jun; 288(26):19260-8. PubMed ID: 23671279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fission yeast TORC1 prevents eIF2α phosphorylation in response to nitrogen and amino acids via Gcn2 kinase.
    Valbuena N; Rozalén AE; Moreno S
    J Cell Sci; 2012 Dec; 125(Pt 24):5955-9. PubMed ID: 23108671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat.
    Chotechuang N; Azzout-Marniche D; Bos C; Chaumontet C; Gausserès N; Steiler T; Gaudichon C; Tomé D
    Am J Physiol Endocrinol Metab; 2009 Dec; 297(6):E1313-23. PubMed ID: 19738034
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.