These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36273969)

  • 1. Rhodopsin, light-sensor of vision.
    Hofmann KP; Lamb TD
    Prog Retin Eye Res; 2023 Mar; 93():101116. PubMed ID: 36273969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of rhodopsin with the G-protein, transducin.
    Hargrave PA; Hamm HE; Hofmann KP
    Bioessays; 1993 Jan; 15(1):43-50. PubMed ID: 8466475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of arrestin and retinoids in the regeneration pathway of rhodopsin.
    Hofmann KP; Pulvermüller A; Buczyłko J; Van Hooser P; Palczewski K
    J Biol Chem; 1992 Aug; 267(22):15701-6. PubMed ID: 1386362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of G-protein activation by rhodopsin.
    Shichida Y; Morizumi T
    Photochem Photobiol; 2007; 83(1):70-5. PubMed ID: 16800722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of rhodopsin activity in vision.
    Baylor DA; Burns ME
    Eye (Lond); 1998; 12 ( Pt 3b)():521-5. PubMed ID: 9775212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of rhodopsin's chromophore monitored in a single photoreceptor.
    Adler L; Boyer NP; Chen C; Koutalos Y
    Methods Mol Biol; 2015; 1271():327-43. PubMed ID: 25697533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhodopsin's carboxyl-terminal threonines are required for wild-type arrestin-mediated quench of transducin activation in vitro.
    Brannock MT; Weng K; Robinson PR
    Biochemistry; 1999 Mar; 38(12):3770-7. PubMed ID: 10090766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of turn-offs of frog rod phototransduction cascade.
    Astakhova LA; Firsov ML; Govardovskii VI
    J Gen Physiol; 2008 Nov; 132(5):587-604. PubMed ID: 18955597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction.
    Zhang H; Huang W; Zhang H; Zhu X; Craft CM; Baehr W; Chen CK
    Mol Vis; 2003 Jun; 9():231-7. PubMed ID: 12802257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments.
    Wilden U; Hall SW; Kühn H
    Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1174-8. PubMed ID: 3006038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics.
    Gunkel M; Schöneberg J; Alkhaldi W; Irsen S; Noé F; Kaupp UB; Al-Amoudi A
    Structure; 2015 Apr; 23(4):628-38. PubMed ID: 25728926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid transducin deactivation in intact stacks of bovine rod outer segment disks as studied by light scattering techniques. Arrestin requires additional soluble proteins for rapid quenching of rhodopsin catalytic activity.
    Wagner R; Ryba N; Uhl R
    FEBS Lett; 1988 Aug; 235(1-2):103-8. PubMed ID: 3136032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin.
    Krupnick JG; Gurevich VV; Benovic JL
    J Biol Chem; 1997 Jul; 272(29):18125-31. PubMed ID: 9218446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoreceptor function of retinal transplants implicated by light-dark shift of S-antigen and rod transducin.
    Seiler MJ; Aramant RB; Ball SL
    Vision Res; 1999 Jul; 39(15):2589-96. PubMed ID: 10396627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutively active rhodopsin and retinal disease.
    Park PS
    Adv Pharmacol; 2014; 70():1-36. PubMed ID: 24931191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of rhodopsin's active lifetime by arrestin-1 expression in mammalian rods.
    Gross OP; Burns ME
    J Neurosci; 2010 Mar; 30(9):3450-7. PubMed ID: 20203204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation and dephosphorylation of frog rod outer segment membranes as part of the visual process.
    Miller JA; Paulsen R
    J Biol Chem; 1975 Jun; 250(12):4427-32. PubMed ID: 1079805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rod visual pigment optimizes active state to achieve efficient G protein activation as compared with cone visual pigments.
    Kojima K; Imamoto Y; Maeda R; Yamashita T; Shichida Y
    J Biol Chem; 2014 Feb; 289(8):5061-73. PubMed ID: 24375403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors.
    Dell'Orco D
    FEBS Lett; 2013 Jun; 587(13):2060-6. PubMed ID: 23684654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrophobic amino acids at the cytoplasmic ends of helices 3 and 6 of rhodopsin conjointly modulate transducin activation.
    Bosch-Presegué L; Iarriccio L; Aguilà M; Toledo D; Ramon E; Cordomí A; Garriga P
    Arch Biochem Biophys; 2011 Feb; 506(2):142-9. PubMed ID: 21114958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.