These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 36274090)
21. Deep Learning-Based Algorithms in Screening of Diabetic Retinopathy: A Systematic Review of Diagnostic Performance. Nielsen KB; Lautrup ML; Andersen JKH; Savarimuthu TR; Grauslund J Ophthalmol Retina; 2019 Apr; 3(4):294-304. PubMed ID: 31014679 [TBL] [Abstract][Full Text] [Related]
22. Understanding inherent image features in CNN-based assessment of diabetic retinopathy. Reguant R; Brunak S; Saha S Sci Rep; 2021 May; 11(1):9704. PubMed ID: 33958686 [TBL] [Abstract][Full Text] [Related]
23. Explainable end-to-end deep learning for diabetic retinopathy detection across multiple datasets. Chetoui M; Akhloufi MA J Med Imaging (Bellingham); 2020 Jul; 7(4):044503. PubMed ID: 32904519 [No Abstract] [Full Text] [Related]
24. Diabetic Retinopathy Prediction Based on Wavelet Decomposition and Modified Capsule Network. Oulhadj M; Riffi J; Khodriss C; Mahraz AM; Bennis A; Yahyaouy A; Chraibi F; Abdellaoui M; Andaloussi IB; Tairi H J Digit Imaging; 2023 Aug; 36(4):1739-1751. PubMed ID: 36973632 [TBL] [Abstract][Full Text] [Related]
25. Performance Analysis of Deep-Neural-Network-Based Automatic Diagnosis of Diabetic Retinopathy. Tariq H; Rashid M; Javed A; Zafar E; Alotaibi SS; Zia MYI Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009747 [TBL] [Abstract][Full Text] [Related]
26. Automated grading of diabetic retinopathy using CNN with hierarchical clustering of image patches by siamese network. Deepa V; Sathish Kumar C; Cherian T Phys Eng Sci Med; 2022 Jun; 45(2):623-635. PubMed ID: 35587313 [TBL] [Abstract][Full Text] [Related]
27. Detection of Diabetic Eye Disease from Retinal Images Using a Deep Learning Based CenterNet Model. Nazir T; Nawaz M; Rashid J; Mahum R; Masood M; Mehmood A; Ali F; Kim J; Kwon HY; Hussain A Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450729 [TBL] [Abstract][Full Text] [Related]
28. Transfer Learning for Automated OCTA Detection of Diabetic Retinopathy. Le D; Alam M; Yao CK; Lim JI; Hsieh YT; Chan RVP; Toslak D; Yao X Transl Vis Sci Technol; 2020 Jul; 9(2):35. PubMed ID: 32855839 [TBL] [Abstract][Full Text] [Related]
30. Referable diabetic retinopathy identification from eye fundus images with weighted path for convolutional neural network. Liu YP; Li Z; Xu C; Li J; Liang R Artif Intell Med; 2019 Aug; 99():101694. PubMed ID: 31606108 [TBL] [Abstract][Full Text] [Related]
31. Gray wolf optimization-extreme learning machine approach for diabetic retinopathy detection. Albadr MAA; Ayob M; Tiun S; Al-Dhief FT; Hasan MK Front Public Health; 2022; 10():925901. PubMed ID: 35979449 [TBL] [Abstract][Full Text] [Related]
32. An effective technique for diabetic retinopathy using hybrid machine learning technique. Murthy NS; Arunadevi B Stat Methods Med Res; 2021 Apr; 30(4):1042-1056. PubMed ID: 33499772 [TBL] [Abstract][Full Text] [Related]
33. Diabetic retinopathy prediction based on vision transformer and modified capsule network. Oulhadj M; Riffi J; Khodriss C; Mahraz AM; Yahyaouy A; Abdellaoui M; Andaloussi IB; Tairi H Comput Biol Med; 2024 Jun; 175():108523. PubMed ID: 38701591 [TBL] [Abstract][Full Text] [Related]
34. Effective methods of diabetic retinopathy detection based on deep convolutional neural networks. Gu Y; Wang X; Pan J; Yong Z; Guo S; Pan T; Jiao Y; Zhou Z Int J Comput Assist Radiol Surg; 2021 Dec; 16(12):2177-2187. PubMed ID: 34606059 [TBL] [Abstract][Full Text] [Related]
35. Applying supervised contrastive learning for the detection of diabetic retinopathy and its severity levels from fundus images. Islam MR; Abdulrazak LF; Nahiduzzaman M; Goni MOF; Anower MS; Ahsan M; Haider J; Kowalski M Comput Biol Med; 2022 Jul; 146():105602. PubMed ID: 35569335 [TBL] [Abstract][Full Text] [Related]
36. Deep learning-based hemorrhage detection for diabetic retinopathy screening. Aziz T; Charoenlarpnopparut C; Mahapakulchai S Sci Rep; 2023 Jan; 13(1):1479. PubMed ID: 36707608 [TBL] [Abstract][Full Text] [Related]
37. Diabetic Retinopathy Detection from Fundus Images of the Eye Using Hybrid Deep Learning Features. Butt MM; Iskandar DNFA; Abdelhamid SE; Latif G; Alghazo R Diagnostics (Basel); 2022 Jul; 12(7):. PubMed ID: 35885512 [TBL] [Abstract][Full Text] [Related]
38. Identifying Diabetic Retinopathy in the Human Eye: A Hybrid Approach Based on a Computer-Aided Diagnosis System Combined with Deep Learning. Atcı ŞY; Güneş A; Zontul M; Arslan Z Tomography; 2024 Feb; 10(2):215-230. PubMed ID: 38393285 [TBL] [Abstract][Full Text] [Related]
39. An advanced deep learning method to detect and classify diabetic retinopathy based on color fundus images. Akella PL; Kumar R Graefes Arch Clin Exp Ophthalmol; 2024 Jan; 262(1):231-247. PubMed ID: 37548671 [TBL] [Abstract][Full Text] [Related]
40. Performance and Limitation of Machine Learning Algorithms for Diabetic Retinopathy Screening: Meta-analysis. Wu JH; Liu TYA; Hsu WT; Ho JH; Lee CC J Med Internet Res; 2021 Jul; 23(7):e23863. PubMed ID: 34407500 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]