These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36274104)

  • 1. Slipping mechanics during walking along curved paths depend on the biomechanical context at slip onset.
    Rasmussen CM; Curtze C; Mukherjee M; Hunt NH
    Sci Rep; 2022 Oct; 12(1):17801. PubMed ID: 36274104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Curvilinear walking elevates fall risk and modulates slip and compensatory step attributes after unconstrained human slips.
    Rasmussen CM; Mun S; Ouattas A; Walski A; Curtze C; Hunt NH
    J Exp Biol; 2024 Mar; 227(6):. PubMed ID: 38456285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unconstrained slip mechanics and stepping reactions depend on slip onset timing.
    Rasmussen CM; Hunt NH
    J Biomech; 2021 Aug; 125():110572. PubMed ID: 34186292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel wearable device to deliver unconstrained, unpredictable slip perturbations during gait.
    Rasmussen CM; Hunt NH
    J Neuroeng Rehabil; 2019 Oct; 16(1):118. PubMed ID: 31623680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterizing slip-like responses during gait using an entire support surface perturbation: Comparisons to previously established slip methods.
    Huntley AH; Rajachandrakumar R; Schinkel-Ivy A; Mansfield A
    Gait Posture; 2019 Mar; 69():130-135. PubMed ID: 30708096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical characteristics of slipping during unconstrained walking, turning, gait initiation and termination.
    Nagano H; Sparrow WA; Begg RK
    Ergonomics; 2013; 56(6):1038-48. PubMed ID: 23600960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Severity of Unconstrained Simultaneous Bilateral Slips: The Impact of Frontal Plane Feet Velocities Relative to the Center of Mass to Classify Slip-Related Falls and Recoveries.
    Ouattas A; Rasmussen CM; Hunt NH
    Front Public Health; 2022; 10():898161. PubMed ID: 35899166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two types of slip-induced falls among community dwelling older adults.
    Yang F; Espy D; Bhatt T; Pai YC
    J Biomech; 2012 Apr; 45(7):1259-64. PubMed ID: 22338614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foot displacement but not velocity predicts the outcome of a slip induced in young subjects while walking.
    Brady RA; Pavol MJ; Owings TM; Grabiner MD
    J Biomech; 2000 Jul; 33(7):803-8. PubMed ID: 10831754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treadmill-based gait-slip training with reduced training volume could still prevent slip-related falls.
    Yang F; Cereceres P; Qiao M
    Gait Posture; 2018 Oct; 66():160-165. PubMed ID: 30195219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of invoked slips while wearing flip-flops in wet and dry conditions: Does alternative footwear alter slip kinematics?
    Tennant LM; Fok DJ; Kingston DC; Winberg TB; Parkinson RJ; Laing AC; Callaghan JP
    Appl Ergon; 2021 Apr; 92():103318. PubMed ID: 33290936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal changes in the required shoe-floor friction when walking following an induced slip.
    Beringer DN; Nussbaum MA; Madigan ML
    PLoS One; 2014; 9(5):e96525. PubMed ID: 24789299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Treadmill-gait slip training in community-dwelling older adults: mechanisms of immediate adaptation for a progressive ascending-mixed-intensity protocol.
    Wang Y; Wang S; Lee A; Pai YC; Bhatt T
    Exp Brain Res; 2019 Sep; 237(9):2305-2317. PubMed ID: 31286173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of the most common gait perturbations on the compensatory limb's ankle, knee, and hip moments during the first stepping response.
    Yoo D; Seo KH; Lee BC
    Gait Posture; 2019 Jun; 71():98-104. PubMed ID: 31031225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inefficient postural responses to unexpected slips during walking in older adults.
    Tang PF; Woollacott MH
    J Gerontol A Biol Sci Med Sci; 1998 Nov; 53(6):M471-80. PubMed ID: 9823752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Falls resulting from a laboratory-induced slip occur at a higher rate among individuals who are obese.
    Allin LJ; Wu X; Nussbaum MA; Madigan ML
    J Biomech; 2016 Mar; 49(5):678-683. PubMed ID: 26897650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive control of gait stability in reducing slip-related backward loss of balance.
    Bhatt T; Wening JD; Pai YC
    Exp Brain Res; 2006 Mar; 170(1):61-73. PubMed ID: 16344930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation to repeated gait-slip perturbations among individuals with multiple sclerosis.
    Yang F; Su X; Wen PS; Lazarus J
    Mult Scler Relat Disord; 2019 Oct; 35():135-141. PubMed ID: 31376685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicted threshold against backward balance loss following a slip in gait.
    Yang F; Anderson FC; Pai YC
    J Biomech; 2008; 41(9):1823-31. PubMed ID: 18538329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The generation of centripetal force when walking in a circle: insight from the distribution of ground reaction forces recorded by plantar insoles.
    Turcato AM; Godi M; Giordano A; Schieppati M; Nardone A
    J Neuroeng Rehabil; 2015 Jan; 12(1):4. PubMed ID: 25576354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.