These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36274417)

  • 21. Investigation of mechanisms of shock wave generation by collapse of cavitation bubbles near particles.
    Hu J; Liu Y; Duan J; Yu J; Zhang Y; Gao D; Zhang Y
    Ultrason Sonochem; 2024 Aug; 108():106952. PubMed ID: 38878714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative evaluation of the microjet velocity and cavitation erosion on a copper plate produced by a spherical cavity focused transducer at the high hydrostatic pressure.
    Xiong J; Liu Y; Li C; Zhou Y; Li F
    Ultrason Sonochem; 2022 Jan; 82():105899. PubMed ID: 34973581
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitigating cavitation erosion using biomimetic gas-entrapping microtextured surfaces (GEMS).
    Gonzalez-Avila SR; Nguyen DM; Arunachalam S; Domingues EM; Mishra H; Ohl CD
    Sci Adv; 2020 Mar; 6(13):eaax6192. PubMed ID: 32258392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of nanobubble collapse on cell membrane integrity.
    Becton M; Averett R; Wang X
    J Micromech Mol Phys; 2017 Jun; 2(2):. PubMed ID: 29863153
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU).
    Zhou Y; Gao XW
    Phys Med Biol; 2016 Sep; 61(18):6651-6667. PubMed ID: 27541633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantifying the chemical activity of cavitation bubbles in a cluster.
    Fattahi K; Boffito DC; Robert E
    Sci Rep; 2024 Apr; 14(1):7978. PubMed ID: 38575603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental investigation on the characteristics of the shock wave emitted by the cavitation bubble near the air bubble.
    Zhu J; Zhang M; Tan Z; Han L; Huang B
    Ultrason Sonochem; 2024 Mar; 104():106846. PubMed ID: 38492554
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Energy partitioning in laser-induced millimeter-sized spherical cavitation up to the fourth oscillation.
    Wen H; Yao Z; Zhong Q; Tian Y; Sun Y; Wang F
    Ultrason Sonochem; 2023 May; 95():106391. PubMed ID: 37003210
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of residual cavitation nuclei to enhance histotripsy erosion of model urinary stones.
    Duryea AP; Roberts WW; Cain CA; Hall TL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):896-904. PubMed ID: 25965682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Chemical History of a Bubble.
    Suslick KS; Eddingsaas NC; Flannigan DJ; Hopkins SD; Xu H
    Acc Chem Res; 2018 Sep; 51(9):2169-2178. PubMed ID: 29771111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Estimation of chemical and physical effects of cavitation by analysis of cavitating single bubble dynamics.
    Pandit AV; Sarvothaman VP; Ranade VV
    Ultrason Sonochem; 2021 Sep; 77():105677. PubMed ID: 34332329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of medium viscoelasticity on bubble collapse strength of interacting polydisperse bubbles.
    Qin D; Zou Q; Zhong X; Zhang B; Li Z
    Ultrason Sonochem; 2023 May; 95():106375. PubMed ID: 36965309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Focused Ultrasound and Lithotripsy.
    Ikeda T; Yoshizawa S; Koizumi N; Mitsuishi M; Matsumoto Y
    Adv Exp Med Biol; 2016; 880():113-29. PubMed ID: 26486335
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical investigation of shock-induced bubble collapse dynamics and fluid-solid interactions during shock-wave lithotripsy.
    Koukas E; Papoutsakis A; Gavaises M
    Ultrason Sonochem; 2023 May; 95():106393. PubMed ID: 37031534
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Geometrical characterization of the cavitation bubble clouds produced by a clinical shock wave device.
    Choi MJ; Kang G; Huh JS
    Biomed Eng Lett; 2017 May; 7(2):143-151. PubMed ID: 30603161
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled, forced collapse of cavitation bubbles for improved stone fragmentation during shock wave lithotripsy.
    Zhong P; Cocks FH; Cioanta I; Preminger GM
    J Urol; 1997 Dec; 158(6):2323-8. PubMed ID: 9366384
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Suppression of cavitation inception by gas bubble injection: a numerical study focusing on bubble-bubble interaction.
    Ida M; Naoe T; Futakawa M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046309. PubMed ID: 17995108
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interpreting the influence of liquid temperature on cavitation collapse intensity through bubble dynamic analysis.
    Peng K; Qin FGF; Jiang R; Kang S
    Ultrason Sonochem; 2020 Dec; 69():105253. PubMed ID: 32731127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microsecond resolution of cavitation bubble dynamics using a high-speed electrochemical impedance approach.
    Birkin PR; Foley TM; Barber JL; Martin HL
    Chem Commun (Camb); 2016 Sep; 52(76):11406-11409. PubMed ID: 27711279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.