These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 36274576)
1. Spontaneous oxidation of I Xing D; Yuan X; Liang C; Jin T; Zhang S; Zhang X Chem Commun (Camb); 2022 Nov; 58(89):12447-12450. PubMed ID: 36274576 [TBL] [Abstract][Full Text] [Related]
2. Spontaneous Reduction of Transition Metal Ions by One Electron in Water Microdroplets and the Atmospheric Implications. Yuan X; Zhang D; Liang C; Zhang X J Am Chem Soc; 2023 Feb; 145(5):2800-2805. PubMed ID: 36705987 [TBL] [Abstract][Full Text] [Related]
3. Production of Molecular Iodine and Tri-iodide in the Frozen Solution of Iodide: Implication for Polar Atmosphere. Kim K; Yabushita A; Okumura M; Saiz-Lopez A; Cuevas CA; Blaszczak-Boxe CS; Min DW; Yoon HI; Choi W Environ Sci Technol; 2016 Feb; 50(3):1280-7. PubMed ID: 26745029 [TBL] [Abstract][Full Text] [Related]
4. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice. Moore CW; Obrist D; Steffen A; Staebler RM; Douglas TA; Richter A; Nghiem SV Nature; 2014 Feb; 506(7486):81-4. PubMed ID: 24429521 [TBL] [Abstract][Full Text] [Related]
5. Conversion of iodide to hypoiodous acid and iodine in aqueous microdroplets exposed to ozone. Pillar-Little EA; Guzman MI; Rodriguez JM Environ Sci Technol; 2013 Oct; 47(19):10971-9. PubMed ID: 23987087 [TBL] [Abstract][Full Text] [Related]
6. Photochemistry of oxidized Hg(I) and Hg(II) species suggests missing mercury oxidation in the troposphere. Saiz-Lopez A; Travnikov O; Sonke JE; Thackray CP; Jacob DJ; Carmona-García J; Francés-Monerris A; Roca-Sanjuán D; Acuña AU; Dávalos JZ; Cuevas CA; Jiskra M; Wang F; Bieser J; Plane JMC; Francisco JS Proc Natl Acad Sci U S A; 2020 Dec; 117(49):30949-30956. PubMed ID: 33229529 [TBL] [Abstract][Full Text] [Related]
7. Together, Not Separately, OH and O Castro PJ; Kellö V; Cernušák I; Dibble TS J Phys Chem A; 2022 Nov; 126(44):8266-8279. PubMed ID: 36321380 [TBL] [Abstract][Full Text] [Related]
8. Mercury depletion events in the troposphere in mid-latitudes at the Dead Sea, Israel. Peleg M; Matveev V; Tas E; Luria M; Valente RJ; Obrist D Environ Sci Technol; 2007 Nov; 41(21):7280-5. PubMed ID: 18044500 [TBL] [Abstract][Full Text] [Related]
9. Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes. Anglada JM; Martins-Costa M; Francisco JS; Ruiz-López MF Acc Chem Res; 2015 Mar; 48(3):575-83. PubMed ID: 25688469 [TBL] [Abstract][Full Text] [Related]
10. Active molecular iodine photochemistry in the Arctic. Raso ARW; Custard KD; May NW; Tanner D; Newburn MK; Walker L; Moore RJ; Huey LG; Alexander L; Shepson PB; Pratt KA Proc Natl Acad Sci U S A; 2017 Sep; 114(38):10053-10058. PubMed ID: 28874585 [TBL] [Abstract][Full Text] [Related]
11. Parameterizing soil emission and atmospheric oxidation-reduction in a model of the global biogeochemical cycle of mercury. Kikuchi T; Ikemoto H; Takahashi K; Hasome H; Ueda H Environ Sci Technol; 2013; 47(21):12266-74. PubMed ID: 24053722 [TBL] [Abstract][Full Text] [Related]
12. Spontaneous Oxidation in Aqueous Microdroplets: Water Radical Cation as Primary Oxidizing Agent. Qiu L; Cooks RG Angew Chem Int Ed Engl; 2024 Apr; 63(17):e202400118. PubMed ID: 38302696 [TBL] [Abstract][Full Text] [Related]
13. Development and application of a regional-scale atmospheric mercury model based on WRF/Chem: a Mediterranean area investigation. Gencarelli CN; De Simone F; Hedgecock IM; Sprovieri F; Pirrone N Environ Sci Pollut Res Int; 2014 Mar; 21(6):4095-109. PubMed ID: 24170496 [TBL] [Abstract][Full Text] [Related]
15. High Electric Field on Water Microdroplets Catalyzes Spontaneous and Ultrafast Oxidative C-H/N-H Cross-Coupling. Zhang D; Yuan X; Gong C; Zhang X J Am Chem Soc; 2022 Sep; 144(35):16184-16190. PubMed ID: 35960958 [TBL] [Abstract][Full Text] [Related]
16. Observational Evidence for Involvement of Nitrate Radicals in Nighttime Oxidation of Mercury. Peleg M; Tas E; Obrist D; Matveev V; Moore C; Gabay M; Luria M Environ Sci Technol; 2015 Dec; 49(24):14008-18. PubMed ID: 26551088 [TBL] [Abstract][Full Text] [Related]
17. Atmospheric reactions of 9,10-anthraquinone. Miet K; Albinet A; Budzinski H; Villenave E Chemosphere; 2014 Jul; 107():1-6. PubMed ID: 24875864 [TBL] [Abstract][Full Text] [Related]
18. Evidence against Rapid Mercury Oxidation in Photochemical Smog. Lyman SN; Elgiar T; Gustin MS; Dunham-Cheatham SM; David LM; Zhang L Environ Sci Technol; 2022 Aug; 56(16):11225-11235. PubMed ID: 35877386 [TBL] [Abstract][Full Text] [Related]
19. Improved Mechanistic Model of the Atmospheric Redox Chemistry of Mercury. Shah V; Jacob DJ; Thackray CP; Wang X; Sunderland EM; Dibble TS; Saiz-Lopez A; Černušák I; Kellö V; Castro PJ; Wu R; Wang C Environ Sci Technol; 2021 Nov; 55(21):14445-14456. PubMed ID: 34724789 [TBL] [Abstract][Full Text] [Related]
20. Iodine emission from the reactive uptake of ozone to simulated seawater. Schneider SR; Lakey PSJ; Shiraiwa M; Abbatt JPD Environ Sci Process Impacts; 2023 Feb; 25(2):254-263. PubMed ID: 35838601 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]