These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 36275505)
1. Magnetoelectric Bio-Implants Powered and Programmed by a Single Transmitter for Coordinated Multisite Stimulation. Yu Z; Chen JC; He Y; Alrashdan FT; Avants BW; Singer A; Robinson JT; Yang K IEEE J Solid-State Circuits; 2022 Mar; 57(3):818-830. PubMed ID: 36275505 [TBL] [Abstract][Full Text] [Related]
2. MagNI: A Magnetoelectrically Powered and Controlled Wireless Neurostimulating Implant. Yu Z; Chen JC; Alrashdan FT; Avants BW; He Y; Singer A; Robinson JT; Yang K IEEE Trans Biomed Circuits Syst; 2020 Dec; 14(6):1241-1252. PubMed ID: 33180732 [TBL] [Abstract][Full Text] [Related]
3. Wearable wireless power systems for 'ME-BIT' magnetoelectric-powered bio implants. Alrashdan FT; Chen JC; Singer A; Avants BW; Yang K; Robinson JT J Neural Eng; 2021 Jul; 18(4):. PubMed ID: 34229314 [No Abstract] [Full Text] [Related]
4. Miniaturized Wirelessly Powered and Controlled Implants for Multisite Stimulation. Habibagahi I; Jang J; Babakhani A IEEE Trans Microw Theory Tech; 2023 May; 71(5):1911-1922. PubMed ID: 38645708 [TBL] [Abstract][Full Text] [Related]
5. Magnetoelectrics for Implantable Bioelectronics: Progress to Date. Alrashdan F; Yang K; Robinson JT Acc Chem Res; 2024 Oct; 57(20):2953-2962. PubMed ID: 39366673 [TBL] [Abstract][Full Text] [Related]
6. Monolithically Defined Wireless Fully Implantable Nervous System Interfaces. Gutruf P Acc Chem Res; 2024 May; 57(9):1275-1286. PubMed ID: 38608256 [TBL] [Abstract][Full Text] [Related]
7. Design and Implementation of Multisite Stimulation System Using a Double-Tuned Transmitter Coil and Miniaturized Implants. Habibagahi I; Mathews RP; Ray A; Babakhani A IEEE Microw Wirel Technol Lett; 2023 Mar; 33(3):351-354. PubMed ID: 37025623 [TBL] [Abstract][Full Text] [Related]
8. A Miniature Batteryless Bioelectronic Implant Using One Magnetoelectric Transducer for Wireless Powering and PWM Backscatter Communication. Yu Z; Zou Y; Liao HC; Alrashdan F; Wen Z; Woods JE; Wang W; Robinson JT; Yang K IEEE Trans Biomed Circuits Syst; 2024 Sep; PP():. PubMed ID: 39321009 [TBL] [Abstract][Full Text] [Related]
9. An Implantable Optogenetic Neuro-Stimulator SoC With Extended Optical Pulse-Width Enabled by Supply-Variation-Immune Cycled Light-Toggling Stimulation. Yousefi T; Timonina K; Zoidl G; Kassiri H IEEE Trans Biomed Circuits Syst; 2022 Aug; 16(4):557-569. PubMed ID: 35969561 [TBL] [Abstract][Full Text] [Related]
10. A Miniaturized, Low-Frequency Magnetoelectric Wireless Power Transfer System for Powering Biomedical Implants. Mukherjee D; Rainu SK; Singh N; Mallick D IEEE Trans Biomed Circuits Syst; 2024 Apr; 18(2):438-450. PubMed ID: 37999967 [TBL] [Abstract][Full Text] [Related]
11. An ultrasonically powered implantable device for targeted drug delivery. Charthad J; Baltsavias S; Samanta D; Ting Chia Chang ; Weber MJ; Hosseini-Nassab N; Zare RN; Arbabian A Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():541-544. PubMed ID: 28324933 [TBL] [Abstract][Full Text] [Related]
12. A mm-Sized Wireless Implantable Device for Electrical Stimulation of Peripheral Nerves. Charthad J; Chang TC; Liu Z; Sawaby A; Weber MJ; Baker S; Gore F; Felt SA; Arbabian A IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):257-270. PubMed ID: 29578414 [TBL] [Abstract][Full Text] [Related]
13. A wireless millimetric magnetoelectric implant for the endovascular stimulation of peripheral nerves. Chen JC; Kan P; Yu Z; Alrashdan F; Garcia R; Singer A; Lai CSE; Avants B; Crosby S; Li Z; Wang B; Felicella MM; Robledo A; Peterchev AV; Goetz SM; Hartgerink JD; Sheth SA; Yang K; Robinson JT Nat Biomed Eng; 2022 Jun; 6(6):706-716. PubMed ID: 35361934 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and Assembly Techniques for Sub-mm Battery-Free Epicortical Implants. Khalifa A; Nasrollahpour M; Nezaratizadeh A; Sha X; Stanaćević M; Sun NX; Cash SS Micromachines (Basel); 2023 Feb; 14(2):. PubMed ID: 36838175 [TBL] [Abstract][Full Text] [Related]
15. A mm-Sized Free-Floating Wireless Implantable Opto-Electro Stimulation Device. Jia Y; Gong Y; Weber A; Li W; Ghovanloo M Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32630557 [TBL] [Abstract][Full Text] [Related]
16. Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system. Abiri P; Abiri A; Packard RRS; Ding Y; Yousefi A; Ma J; Bersohn M; Nguyen KL; Markovic D; Moloudi S; Hsiai TK Sci Rep; 2017 Jul; 7(1):6180. PubMed ID: 28733677 [TBL] [Abstract][Full Text] [Related]
17. Circuit-Level Modeling and Simulation of Wireless Sensing and Energy Harvesting With Hybrid Magnetoelectric Antennas for Implantable Neural Devices. DAS D; Xu Z; Nasrollahpour M; Martos-Repath I; Zaeimbashi M; Khalifa A; Mittal A; Cash SS; Sun NX; Shrivastava A; Onabajo M IEEE Open J Circuits Syst; 2023; 4():139-155. PubMed ID: 37829556 [TBL] [Abstract][Full Text] [Related]
18. The Microbead: A Highly Miniaturized Wirelessly Powered Implantable Neural Stimulating System. Khalifa A; Karimi Y; Wang Q; Garikapati S; Montlouis W; Stanacevic M; Thakor N; Etienne-Cummings R IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):521-531. PubMed ID: 29877816 [TBL] [Abstract][Full Text] [Related]
19. A mm-Sized Free-Floating Wirelessly Powered Implantable Optical Stimulation Device. Jia Y; Mirbozorgi SA; Lee B; Khan W; Madi F; Inan OT; Weber A; Li W; Ghovanloo M IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):608-618. PubMed ID: 31135371 [TBL] [Abstract][Full Text] [Related]
20. A wirelessly programmable chip for multi-channel neural stimulation. Mai S; Wang Z; Zhang C; Wang Z Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6595-9. PubMed ID: 23367441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]