BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 36276638)

  • 1. TCA-phospholipid-glycolysis targeted triple therapy effectively suppresses ATP production and tumor growth in glioblastoma.
    Yang S; Zhao J; Cui X; Zhan Q; Yi K; Wang Q; Xiao M; Tan Y; Hong B; Fang C; Kang C
    Theranostics; 2022; 12(16):7032-7050. PubMed ID: 36276638
    [No Abstract]   [Full Text] [Related]  

  • 2. The cellular and compartmental profile of mouse retinal glycolysis, tricarboxylic acid cycle, oxidative phosphorylation, and ~P transferring kinases.
    Rueda EM; Johnson JE; Giddabasappa A; Swaroop A; Brooks MJ; Sigel I; Chaney SY; Fox DA
    Mol Vis; 2016; 22():847-85. PubMed ID: 27499608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PTRF/cavin-1 remodels phospholipid metabolism to promote tumor proliferation and suppress immune responses in glioblastoma by stabilizing cPLA2.
    Yi K; Zhan Q; Wang Q; Tan Y; Fang C; Wang Y; Zhou J; Yang C; Li Y; Kang C
    Neuro Oncol; 2021 Mar; 23(3):387-399. PubMed ID: 33140095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood exosomes-based targeted delivery of cPLA2 siRNA and metformin to modulate glioblastoma energy metabolism for tailoring personalized therapy.
    Zhan Q; Yi K; Cui X; Li X; Yang S; Wang Q; Fang C; Tan Y; Li L; Xu C; Yuan X; Kang C
    Neuro Oncol; 2022 Nov; 24(11):1871-1883. PubMed ID: 35312010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lack of Retinoblastoma Protein Shifts Tumor Metabolism from Glycolysis to OXPHOS and Allows the Use of Alternate Fuels.
    Suresh Babu V; Dudeja G; Sa D; Bisht A; Shetty R; Heymans S; Guha N; Ghosh A
    Cells; 2022 Oct; 11(20):. PubMed ID: 36291051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-targeting of aberrant glucose metabolism in glioblastoma.
    Shen H; Decollogne S; Dilda PJ; Hau E; Chung SA; Luk PP; Hogg PJ; McDonald KL
    J Exp Clin Cancer Res; 2015 Feb; 34(1):14. PubMed ID: 25652202
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of mitochondrial respiratory function in highly glycolytic glioma cells reveals low ADP phosphorylation in relation to oxidative capacity.
    Rodrigues-Silva E; Siqueira-Santos ES; Ruas JS; Ignarro RS; Figueira TR; Rogério F; Castilho RF
    J Neurooncol; 2017 Jul; 133(3):519-529. PubMed ID: 28540666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of bioenergetics through dual inhibition of aldehyde dehydrogenase and mitochondrial complex I suppresses glioblastoma tumorspheres.
    Park J; Shim JK; Kang JH; Choi J; Chang JH; Kim SY; Kang SG
    Neuro Oncol; 2018 Jun; 20(7):954-965. PubMed ID: 29294080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor cells switch to mitochondrial oxidative phosphorylation under radiation via mTOR-mediated hexokinase II inhibition--a Warburg-reversing effect.
    Lu CL; Qin L; Liu HC; Candas D; Fan M; Li JJ
    PLoS One; 2015; 10(3):e0121046. PubMed ID: 25807077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Expression of Glycolytic Genes in Clinical Glioblastoma Patients Correlates With Lower Survival.
    Stanke KM; Wilson C; Kidambi S
    Front Mol Biosci; 2021; 8():752404. PubMed ID: 35004842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme.
    Wolf A; Agnihotri S; Micallef J; Mukherjee J; Sabha N; Cairns R; Hawkins C; Guha A
    J Exp Med; 2011 Feb; 208(2):313-26. PubMed ID: 21242296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects.
    El Sayed SM; El-Magd RM; Shishido Y; Yorita K; Chung SP; Tran DH; Sakai T; Watanabe H; Kagami S; Fukui K
    J Bioenerg Biomembr; 2012 Oct; 44(5):513-23. PubMed ID: 22802136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ENTPD5-mediated modulation of ATP results in altered metabolism and decreased survival in gliomablastoma multiforme.
    Zadran S; Amighi A; Otiniano E; Wong K; Zadran H
    Tumour Biol; 2012 Dec; 33(6):2411-21. PubMed ID: 22992974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ketoconazole and Posaconazole Selectively Target HK2-expressing Glioblastoma Cells.
    Agnihotri S; Mansouri S; Burrell K; Li M; Mamatjan Y; Liu J; Nejad R; Kumar S; Jalali S; Singh SK; Vartanian A; Chen EX; Karimi S; Singh O; Bunda S; Mansouri A; Aldape KD; Zadeh G
    Clin Cancer Res; 2019 Jan; 25(2):844-855. PubMed ID: 30322879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic Drug-Induced Metabolic Reprogramming in Glioblastoma.
    Nguyen TTT; Shang E; Westhoff MA; Karpel-Massler G; Siegelin MD
    Cells; 2022 Sep; 11(19):. PubMed ID: 36230918
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resveratrol targeting of AKT and p53 in glioblastoma and glioblastoma stem-like cells to suppress growth and infiltration.
    Clark PA; Bhattacharya S; Elmayan A; Darjatmoko SR; Thuro BA; Yan MB; van Ginkel PR; Polans AS; Kuo JS
    J Neurosurg; 2017 May; 126(5):1448-1460. PubMed ID: 27419830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytosolic phospholipase A2: targeting cancer through the tumor vasculature.
    Linkous A; Geng L; Lyshchik A; Hallahan DE; Yazlovitskaya EM
    Clin Cancer Res; 2009 Mar; 15(5):1635-44. PubMed ID: 19240173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis.
    Chinopoulos C; Seyfried TN
    ASN Neuro; 2018; 10():1759091418818261. PubMed ID: 30909720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytosolic phospholipase A2 plays a crucial role in ROS/NO signaling during microglial activation through the lipoxygenase pathway.
    Chuang DY; Simonyi A; Kotzbauer PT; Gu Z; Sun GY
    J Neuroinflammation; 2015 Oct; 12():199. PubMed ID: 26520095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of glioblastoma tumorspheres by combined treatment with 2-deoxyglucose and metformin.
    Kim EH; Lee JH; Oh Y; Koh I; Shim JK; Park J; Choi J; Yun M; Jeon JY; Huh YM; Chang JH; Kim SH; Kim KS; Cheong JH; Kim P; Kang SG
    Neuro Oncol; 2017 Feb; 19(2):197-207. PubMed ID: 27571886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.