These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 36276885)
1. Machine learning models for predicting survival in patients with ampullary adenocarcinoma. Huang T; Huang L; Yang R; Li S; He N; Feng A; Li L; Lyu J Asia Pac J Oncol Nurs; 2022 Dec; 9(12):100141. PubMed ID: 36276885 [TBL] [Abstract][Full Text] [Related]
2. Development and validation of machine learning models for predicting prognosis and guiding individualized postoperative chemotherapy: A real-world study of distal cholangiocarcinoma. Wang D; Pan B; Huang JC; Chen Q; Cui SP; Lang R; Lyu SC Front Oncol; 2023; 13():1106029. PubMed ID: 37007095 [TBL] [Abstract][Full Text] [Related]
3. Deep learning models for predicting the survival of patients with hepatocellular carcinoma based on a surveillance, epidemiology, and end results (SEER) database analysis. Wang S; Shao M; Fu Y; Zhao R; Xing Y; Zhang L; Xu Y Sci Rep; 2024 Jun; 14(1):13232. PubMed ID: 38853169 [TBL] [Abstract][Full Text] [Related]
4. Deep learning model for predicting the survival of patients with primary gastrointestinal lymphoma based on the SEER database and a multicentre external validation cohort. Wang F; Chen L; Liu L; Jia Y; Li W; Wang L; Zhi J; Liu W; Li W; Li Z J Cancer Res Clin Oncol; 2023 Oct; 149(13):12177-12189. PubMed ID: 37428248 [TBL] [Abstract][Full Text] [Related]
5. Development and validation of a deep learning-based survival prediction model for pediatric glioma patients: A retrospective study using the SEER database and Chinese data. Jiao Y; Ye J; Zhao W; Fan Z; Kou Y; Guo S; Chao M; Fan C; Ji P; Liu J; Zhai Y; Wang Y; Wang N; Wang L Comput Biol Med; 2024 Nov; 182():109185. PubMed ID: 39341114 [TBL] [Abstract][Full Text] [Related]
6. Deep learning models for predicting the survival of patients with chondrosarcoma based on a surveillance, epidemiology, and end results analysis. Yan L; Gao N; Ai F; Zhao Y; Kang Y; Chen J; Weng Y Front Oncol; 2022; 12():967758. PubMed ID: 36072795 [TBL] [Abstract][Full Text] [Related]
7. Deep-learning model for predicting the survival of rectal adenocarcinoma patients based on a surveillance, epidemiology, and end results analysis. Yu H; Huang T; Feng B; Lyu J BMC Cancer; 2022 Feb; 22(1):210. PubMed ID: 35216571 [TBL] [Abstract][Full Text] [Related]
8. Development and validation of survival prediction model for gastric adenocarcinoma patients using deep learning: A SEER-based study. Zeng J; Li K; Cao F; Zheng Y Front Oncol; 2023; 13():1131859. PubMed ID: 36959782 [TBL] [Abstract][Full Text] [Related]
9. Deep-learning-based survival prediction of patients with cutaneous malignant melanoma. Yu H; Yang W; Wu S; Xi S; Xia X; Zhao Q; Ming WK; Wu L; Hu Y; Deng L; Lyu J Front Med (Lausanne); 2023; 10():1165865. PubMed ID: 37051218 [TBL] [Abstract][Full Text] [Related]
10. Deep-learning-based survival prediction of patients with lower limb melanoma. Zhang J; Yu H; Zheng X; Ming WK; Lak YS; Tom KC; Lee A; Huang H; Chen W; Lyu J; Deng L Discov Oncol; 2023 Nov; 14(1):218. PubMed ID: 38030951 [TBL] [Abstract][Full Text] [Related]
11. Predicting overall survival in chordoma patients using machine learning models: a web-app application. Cheng P; Xie X; Knoedler S; Mi B; Liu G J Orthop Surg Res; 2023 Sep; 18(1):652. PubMed ID: 37660044 [TBL] [Abstract][Full Text] [Related]
12. Machine learning-based individualized survival prediction model for prognosis in osteosarcoma: Data from the SEER database. Cao P; Dun Y; Xiang X; Wang D; Cheng W; Yan L; Li H Medicine (Baltimore); 2024 Sep; 103(39):e39582. PubMed ID: 39331900 [TBL] [Abstract][Full Text] [Related]
13. Development and validation of a nomogram model for cancer-specific survival of patients with poorly differentiated thyroid carcinoma: A SEER database analysis. Jin S; Liu H; Yang J; Zhou J; Peng D; Liu X; Zhang H; Zeng Z; Ye YN Front Endocrinol (Lausanne); 2022; 13():882279. PubMed ID: 36176465 [TBL] [Abstract][Full Text] [Related]
14. Development of a Deep Learning Model for Malignant Small Bowel Tumors Survival: A SEER-Based Study. Yin M; Lin J; Liu L; Gao J; Xu W; Yu C; Qu S; Liu X; Qian L; Xu C; Zhu J Diagnostics (Basel); 2022 May; 12(5):. PubMed ID: 35626403 [TBL] [Abstract][Full Text] [Related]
15. Gender-specific nomogram models to predict the prognosis of male and female lung adenocarcinoma patients: a population-based analysis. Wen H; Lin X; Sun D Ann Transl Med; 2021 Nov; 9(22):1654. PubMed ID: 34988163 [TBL] [Abstract][Full Text] [Related]
16. Predicting the survival of patients with pancreatic neuroendocrine neoplasms using deep learning: A study based on Surveillance, Epidemiology, and End Results database. Jiang C; Wang K; Yan L; Yao H; Shi H; Lin R Cancer Med; 2023 Jun; 12(11):12413-12424. PubMed ID: 37165971 [TBL] [Abstract][Full Text] [Related]
17. Prediction of survival in oropharyngeal squamous cell carcinoma using machine learning algorithms: A study based on the surveillance, epidemiology, and end results database. Kim SI; Kang JW; Eun YG; Lee YC Front Oncol; 2022; 12():974678. PubMed ID: 36072804 [TBL] [Abstract][Full Text] [Related]
18. Metastasis Pattern and Survival Analysis in Primary Small Bowel Adenocarcinoma: A SEER-Based Study. Gu Y; Deng H; Wang D; Li Y Front Surg; 2021; 8():759162. PubMed ID: 34950695 [No Abstract] [Full Text] [Related]
19. A prognostic nomogram for stage II/III rectal cancer patients treated with neoadjuvant chemoradiotherapy followed by surgical resection. Lin Y BMC Surg; 2022 Jul; 22(1):256. PubMed ID: 35787802 [TBL] [Abstract][Full Text] [Related]
20. A convenient clinical nomogram for predicting the cancer-specific survival of individual patients with small-intestine adenocarcinoma. Wang N; Yang J; Lyu J; Liu Q; He H; Liu J; Li L; Ren X; Li Z BMC Cancer; 2020 Jun; 20(1):505. PubMed ID: 32487033 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]