These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 36276999)
1. MSeg-Net: A Melanoma Mole Segmentation Network Using CornerNet and Fuzzy Nawaz M; Nazir T; Khan MA; Alhaisoni M; Kim JY; Nam Y Comput Math Methods Med; 2022; 2022():7502504. PubMed ID: 36276999 [TBL] [Abstract][Full Text] [Related]
2. Skin cancer detection from dermoscopic images using deep learning and fuzzy k-means clustering. Nawaz M; Mehmood Z; Nazir T; Naqvi RA; Rehman A; Iqbal M; Saba T Microsc Res Tech; 2022 Jan; 85(1):339-351. PubMed ID: 34448519 [TBL] [Abstract][Full Text] [Related]
3. Efficient skin lesion segmentation using separable-Unet with stochastic weight averaging. Tang P; Liang Q; Yan X; Xiang S; Sun W; Zhang D; Coppola G Comput Methods Programs Biomed; 2019 Sep; 178():289-301. PubMed ID: 31416556 [TBL] [Abstract][Full Text] [Related]
4. Automatic lesion segmentation using atrous convolutional deep neural networks in dermoscopic skin cancer images. Kaur R; GholamHosseini H; Sinha R; Lindén M BMC Med Imaging; 2022 May; 22(1):103. PubMed ID: 35644612 [TBL] [Abstract][Full Text] [Related]
5. Melanoma lesion detection and segmentation using deep region based convolutional neural network and fuzzy C-means clustering. Nida N; Irtaza A; Javed A; Yousaf MH; Mahmood MT Int J Med Inform; 2019 Apr; 124():37-48. PubMed ID: 30784425 [TBL] [Abstract][Full Text] [Related]
6. Melanoma segmentation using deep learning with test-time augmentations and conditional random fields. Ashraf H; Waris A; Ghafoor MF; Gilani SO; Niazi IK Sci Rep; 2022 Mar; 12(1):3948. PubMed ID: 35273282 [TBL] [Abstract][Full Text] [Related]
7. Segmentation of skin lesions in dermoscopy images using fuzzy classification of pixels and histogram thresholding. Garcia-Arroyo JL; Garcia-Zapirain B Comput Methods Programs Biomed; 2019 Jan; 168():11-19. PubMed ID: 30527129 [TBL] [Abstract][Full Text] [Related]
9. Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Al-Masni MA; Al-Antari MA; Choi MT; Han SM; Kim TS Comput Methods Programs Biomed; 2018 Aug; 162():221-231. PubMed ID: 29903489 [TBL] [Abstract][Full Text] [Related]
10. Melanoma recognition in dermoscopy images using lesion's peripheral region information. Tajeddin NZ; Asl BM Comput Methods Programs Biomed; 2018 Sep; 163():143-153. PubMed ID: 30119849 [TBL] [Abstract][Full Text] [Related]
11. Segmentation of dermatoscopic images by frequency domain filtering and k-means clustering algorithms. Rajab MI Skin Res Technol; 2011 Nov; 17(4):469-78. PubMed ID: 21342295 [TBL] [Abstract][Full Text] [Related]
12. Automated Detection of Nonmelanoma Skin Cancer Based on Deep Convolutional Neural Network. Arif M; Philip FM; Ajesh F; Izdrui D; Craciun MD; Geman O J Healthc Eng; 2022; 2022():6952304. PubMed ID: 35186235 [TBL] [Abstract][Full Text] [Related]
13. Detecting anomalous growth of skin lesion using threshold-based segmentation algorithm and Fuzzy K-Nearest Neighbor classifier. Sivaraj S; Malmathanraj R; Palanisamy P J Cancer Res Ther; 2020; 16(1):40-52. PubMed ID: 32362608 [TBL] [Abstract][Full Text] [Related]
14. Developing a Recognition System for Diagnosing Melanoma Skin Lesions Using Artificial Intelligence Algorithms. Alsaade FW; Aldhyani THH; Al-Adhaileh MH Comput Math Methods Med; 2021; 2021():9998379. PubMed ID: 34055044 [TBL] [Abstract][Full Text] [Related]
15. Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture. Attia M; Hossny M; Zhou H; Nahavandi S; Asadi H; Yazdabadi A Comput Methods Programs Biomed; 2019 Aug; 177():17-30. PubMed ID: 31319945 [TBL] [Abstract][Full Text] [Related]
16. Skin Lesion Segmentation from Dermoscopic Images Using Convolutional Neural Network. Zafar K; Gilani SO; Waris A; Ahmed A; Jamil M; Khan MN; Sohail Kashif A Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183041 [TBL] [Abstract][Full Text] [Related]
17. Segmentation of dermoscopy images based on deformable 3D convolution and ResU-NeXt +. Zhao C; Shuai R; Ma L; Liu W; Wu M Med Biol Eng Comput; 2021 Sep; 59(9):1815-1832. PubMed ID: 34304370 [TBL] [Abstract][Full Text] [Related]
18. Intelligent skin lesion segmentation using deformable attention Transformer U-Net with bidirectional attention mechanism in skin cancer images. Cai L; Hou K; Zhou S Skin Res Technol; 2024 Aug; 30(8):e13783. PubMed ID: 39113617 [TBL] [Abstract][Full Text] [Related]
19. Dermoscopic Image Segmentation via Multistage Fully Convolutional Networks. Bi L; Kim J; Ahn E; Kumar A; Fulham M; Feng D IEEE Trans Biomed Eng; 2017 Sep; 64(9):2065-2074. PubMed ID: 28600236 [TBL] [Abstract][Full Text] [Related]