These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36277213)

  • 1. Validation of
    Jeong DU; Danadibrata RZ; Marcellinus A; Lim KM
    Front Physiol; 2022; 13():1009647. PubMed ID: 36277213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. qInward variability-based
    Jeong DU; Qashri Mahardika T N; Marcellinus A; Lim KM
    Front Physiol; 2022; 13():1080190. PubMed ID: 36589462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Occurrence of early afterdepolarization under healthy or hypertrophic cardiomyopathy conditions in the human ventricular endocardial myocyte: In silico study using 109 torsadogenic or non-torsadogenic compounds.
    Christophe B
    Toxicol Appl Pharmacol; 2022 Mar; 438():115914. PubMed ID: 35150662
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proarrhythmic risk assessment of drugs by dV
    Jeong DU; Yoo Y; Marcellinus A; Kim KS; Lim KM
    CPT Pharmacometrics Syst Pharmacol; 2022 May; 11(5):653-664. PubMed ID: 35579100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Considering population variability of electrophysiological models improves the in silico assessment of drug-induced torsadogenic risk.
    Llopis-Lorente J; Trenor B; Saiz J
    Comput Methods Programs Biomed; 2022 Jun; 221():106934. PubMed ID: 35687995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncertainty Quantification Reveals the Importance of Data Variability and Experimental Design Considerations for
    Chang KC; Dutta S; Mirams GR; Beattie KA; Sheng J; Tran PN; Wu M; Wu WW; Colatsky T; Strauss DG; Li Z
    Front Physiol; 2017; 8():917. PubMed ID: 29209226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Convolutional Neural Networks Using Action Potential Shape for In-Silico Proarrhythmic Risk Assessment.
    Jeong DU; Yoo Y; Marcellinus A; Lim KM
    Biomedicines; 2023 Jan; 11(2):. PubMed ID: 36830942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of Drug Proarrhythmicity Using Artificial Neural Networks With
    Yoo Y; Marcellinus A; Jeong DU; Kim KS; Lim KM
    Front Physiol; 2021; 12():761691. PubMed ID: 34955882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving the In Silico Assessment of Proarrhythmia Risk by Combining hERG (Human Ether-à-go-go-Related Gene) Channel-Drug Binding Kinetics and Multichannel Pharmacology.
    Li Z; Dutta S; Sheng J; Tran PN; Wu W; Chang K; Mdluli T; Strauss DG; Colatsky T
    Circ Arrhythm Electrophysiol; 2017 Feb; 10(2):e004628. PubMed ID: 28202629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolving regulatory paradigm for proarrhythmic risk assessment for new drugs.
    Vicente J; Stockbridge N; Strauss DG
    J Electrocardiol; 2016; 49(6):837-842. PubMed ID: 27524478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of an
    Dutta S; Chang KC; Beattie KA; Sheng J; Tran PN; Wu WW; Wu M; Strauss DG; Colatsky T; Li Z
    Front Physiol; 2017; 8():616. PubMed ID: 28878692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction to
    Park JS; Jeon JY; Yang JH; Kim MG
    Transl Clin Pharmacol; 2019 Mar; 27(1):12-18. PubMed ID: 32055576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cardiac voltage-gated ion channels in safety pharmacology: Review of the landscape leading to the CiPA initiative.
    Huang H; Pugsley MK; Fermini B; Curtis MJ; Koerner J; Accardi M; Authier S
    J Pharmacol Toxicol Methods; 2017 Sep; 87():11-23. PubMed ID: 28408211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of disease state on arrhythmic event detection by action potential modelling in cardiac safety pharmacology.
    Christophe B; Crumb WJ
    J Pharmacol Toxicol Methods; 2019; 96():15-26. PubMed ID: 30580044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Usefulness of Bnet, a Simple Linear Metric in Discerning Torsades De Pointes Risks in 28 CiPA Drugs.
    Han S; Han S; Kim KS; Lee HA; Yim DS
    Front Pharmacol; 2019; 10():1419. PubMed ID: 31849669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improving prediction of torsadogenic risk in the CiPA in silico model by appropriately accounting for clinical exposure.
    Leishman DJ
    J Pharmacol Toxicol Methods; 2020; 101():106654. PubMed ID: 31730936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimizing repolarization-related proarrhythmic risk in drug development and clinical practice.
    Farkas AS; Nattel S
    Drugs; 2010 Mar; 70(5):573-603. PubMed ID: 20329805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Comprehensive in Vitro Proarrhythmia Assay (CiPA) initiative - Update on progress.
    Colatsky T; Fermini B; Gintant G; Pierson JB; Sager P; Sekino Y; Strauss DG; Stockbridge N
    J Pharmacol Toxicol Methods; 2016; 81():15-20. PubMed ID: 27282641
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Llopis-Lorente J; Gomis-Tena J; Cano J; Romero L; Saiz J; Trenor B
    J Chem Inf Model; 2020 Oct; 60(10):5172-5187. PubMed ID: 32786710
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonclinical proarrhythmia models: predicting Torsades de Pointes.
    Lawrence CL; Pollard CE; Hammond TG; Valentin JP
    J Pharmacol Toxicol Methods; 2005; 52(1):46-59. PubMed ID: 15975832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.