These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36277388)

  • 1. Viscoelastic damage evaluation of the axon.
    Hasan F; Mahmud KA; Khan MI; Adnan A
    Front Bioeng Biotechnol; 2022; 10():904818. PubMed ID: 36277388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometrical nonlinear elasticity of axon under tension: A coarse-grained computational study.
    Liu N; Chavoshnejad P; Li S; Razavi MJ; Liu T; Pidaparti R; Wang X
    Biophys J; 2021 Sep; 120(17):3697-3708. PubMed ID: 34310941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Effects of Dynamic Binding between Tau Proteins on Microtubules during Axonal Injury.
    Ahmadzadeh H; Smith DH; Shenoy VB
    Biophys J; 2015 Dec; 109(11):2328-37. PubMed ID: 26636944
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the atomistic-based continuum viscoelastic constitutive relations for axonal microtubules.
    Adnan A; Qidwai S; Bagchi A
    J Mech Behav Biomed Mater; 2018 Oct; 86():375-389. PubMed ID: 30015209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Torsional behavior of axonal microtubule bundles.
    Lazarus C; Soheilypour M; Mofrad MR
    Biophys J; 2015 Jul; 109(2):231-9. PubMed ID: 26200859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viscoelasticity of tau proteins leads to strain rate-dependent breaking of microtubules during axonal stretch injury: predictions from a mathematical model.
    Ahmadzadeh H; Smith DH; Shenoy VB
    Biophys J; 2014 Mar; 106(5):1123-33. PubMed ID: 24606936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A micromechanical procedure for viscoelastic characterization of the axons and ECM of the brainstem.
    Javid S; Rezaei A; Karami G
    J Mech Behav Biomed Mater; 2014 Feb; 30():290-9. PubMed ID: 24361933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Strain Rate on Single Tau, Dimerized Tau and Tau-Microtubule Interface: A Molecular Dynamics Simulation Study.
    Khan MI; Gilpin K; Hasan F; Mahmud KAHA; Adnan A
    Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Harmonic viscoelastic response of 3D histology-informed white matter model.
    Wu X; Georgiadis JG; Pelegri AA
    Mol Cell Neurosci; 2022 Dec; 123():103782. PubMed ID: 36154874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Three-Dimensional Statistical Volume Element for Histology Informed Micromechanical Modeling of Brain White Matter.
    Hoursan H; Farahmand F; Ahmadian MT
    Ann Biomed Eng; 2020 Apr; 48(4):1337-1353. PubMed ID: 31965358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A micromechanical hyperelastic modeling of brain white matter under large deformation.
    Karami G; Grundman N; Abolfathi N; Naik A; Ziejewski M
    J Mech Behav Biomed Mater; 2009 Jul; 2(3):243-54. PubMed ID: 19627829
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A viscoelastic model for axonal microtubule rupture.
    Shamloo A; Manuchehrfar F; Rafii-Tabar H
    J Biomech; 2015 May; 48(7):1241-7. PubMed ID: 25835789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite Element Modeling of CNS White Matter Kinematics: Use of a 3D RVE to Determine Material Properties.
    Pan Y; Sullivan D; Shreiber DI; Pelegri AA
    Front Bioeng Biotechnol; 2013; 1():19. PubMed ID: 25152875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Ogden hyperelastic 3D micromechanical model to depict Poynting effect in brain white matter.
    Agarwal M; Pelegri AA
    Heliyon; 2024 Feb; 10(3):e25379. PubMed ID: 38371981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Processes induced by tau expression in Sf9 cells have an axon-like microtubule organization.
    Baas PW; Pienkowski TP; Kosik KS
    J Cell Biol; 1991 Dec; 115(5):1333-44. PubMed ID: 1955477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilizing a Structural Mechanics Approach to Assess the Primary Effects of Injury Loads Onto the Axon and Its Components.
    Montanino A; Kleiven S
    Front Neurol; 2018; 9():643. PubMed ID: 30127763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressive mechanical characterization of non-human primate spinal cord white matter.
    Jannesar S; Allen M; Mills S; Gibbons A; Bresnahan JC; Salegio EA; Sparrey CJ
    Acta Biomater; 2018 Jul; 74():260-269. PubMed ID: 29729417
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method.
    Hirokawa N
    J Cell Biol; 1982 Jul; 94(1):129-42. PubMed ID: 6181077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Partial interruption of axonal transport due to microtubule breakage accounts for the formation of periodic varicosities after traumatic axonal injury.
    Tang-Schomer MD; Johnson VE; Baas PW; Stewart W; Smith DH
    Exp Neurol; 2012 Jan; 233(1):364-72. PubMed ID: 22079153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sex Differences in Axonal Dynamic Responses Under Realistic Tension Using Finite Element Models.
    Zhang C; Ji S
    J Neurotrauma; 2023 Oct; 40(19-20):2217-2232. PubMed ID: 37335051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.