These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Selective gas adsorption and separation in metal-organic frameworks. Li JR; Kuppler RJ; Zhou HC Chem Soc Rev; 2009 May; 38(5):1477-504. PubMed ID: 19384449 [TBL] [Abstract][Full Text] [Related]
5. Potential of metal-organic frameworks for separation of xenon and krypton. Banerjee D; Cairns AJ; Liu J; Motkuri RK; Nune SK; Fernandez CA; Krishna R; Strachan DM; Thallapally PK Acc Chem Res; 2015 Feb; 48(2):211-9. PubMed ID: 25479165 [TBL] [Abstract][Full Text] [Related]
6. Importance of Bridging Molecular and Process Modeling to Design Optimal Adsorbents for Large-Scale CO Vega LF; Bahamon D Acc Chem Res; 2024 Jan; 57(2):188-197. PubMed ID: 38156949 [TBL] [Abstract][Full Text] [Related]
7. Effects of Force Field Selection on the Computational Ranking of MOFs for CO Dokur D; Keskin S Ind Eng Chem Res; 2018 Feb; 57(6):2298-2309. PubMed ID: 29503503 [TBL] [Abstract][Full Text] [Related]
8. Deep learning combined with IAST to screen thermodynamically feasible MOFs for adsorption-based separation of multiple binary mixtures. Anderson R; Gómez-Gualdrón DA J Chem Phys; 2021 Jun; 154(23):234102. PubMed ID: 34241255 [TBL] [Abstract][Full Text] [Related]
9. Ionic Liquids Functionalized MOFs for Adsorption. Li X; Chen K; Guo R; Wei Z Chem Rev; 2023 Aug; 123(16):10432-10467. PubMed ID: 37450853 [TBL] [Abstract][Full Text] [Related]
10. Unlocking the Effect of H Erucar I; Keskin S Ind Eng Chem Res; 2020 Feb; 59(7):3141-3152. PubMed ID: 32201455 [TBL] [Abstract][Full Text] [Related]
11. Computational Screening of MOFs for Acetylene Separation. Nemati Vesali Azar A; Keskin S Front Chem; 2018; 6():36. PubMed ID: 29536004 [TBL] [Abstract][Full Text] [Related]
12. On the Role of Flexibility for Adsorptive Separation. Zhou DD; Zhang JP Acc Chem Res; 2022 Oct; 55(20):2966-2977. PubMed ID: 36067359 [TBL] [Abstract][Full Text] [Related]
13. [Application of gas chromatography separation based on metal-organic framework material as stationary phase]. Tang W; Meng S; Xu M; Gu Z Se Pu; 2021 Jan; 39(1):57-68. PubMed ID: 34227359 [TBL] [Abstract][Full Text] [Related]
14. Metal-Organic Framework Materials for the Separation and Purification of Light Hydrocarbons. Cui WG; Hu TL; Bu XH Adv Mater; 2020 Jan; 32(3):e1806445. PubMed ID: 31106907 [TBL] [Abstract][Full Text] [Related]
15. Light Hydrocarbon Separations Using Porous Organic Framework Materials. Zhang S; Taylor MK; Jiang L; Ren H; Zhu G Chemistry; 2020 Mar; 26(15):3205-3221. PubMed ID: 31667891 [TBL] [Abstract][Full Text] [Related]
16. High-Throughput Screening of the CoRE-MOF-2019 Database for CO Kancharlapalli S; Snurr RQ ACS Appl Mater Interfaces; 2023 Jun; 15(23):28084-28092. PubMed ID: 37262369 [TBL] [Abstract][Full Text] [Related]
17. Hierarchical Computational Screening of Quantum Metal-Organic Framework Database to Identify Metal-Organic Frameworks for Volatile Organic-Compound Capture from Air. Ercakir G; Aksu GO; Altintas C; Keskin S ACS Eng Au; 2023 Dec; 3(6):488-497. PubMed ID: 38144678 [TBL] [Abstract][Full Text] [Related]
18. Efficient Exploration of Adsorption Space for Separations in Metal-Organic Frameworks Combining the Use of Molecular Simulations, Machine Learning, and Ideal Adsorbed Solution Theory. Yu X; Tang D; Chng JY; Sholl DS J Phys Chem C Nanomater Interfaces; 2023 Sep; 127(38):19229-19239. PubMed ID: 37791097 [TBL] [Abstract][Full Text] [Related]
19. In Silico Screening of Metal-Organic Frameworks for Formaldehyde Capture with and without Humidity by Molecular Simulation. Li W; Liang T; Lin Y; Wu W; Li S Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430151 [TBL] [Abstract][Full Text] [Related]