These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 3627774)
1. Structural elements and organization of the ancestral translational machinery. Rein R; Srinivasan S; McDonald J; Raghunathan G; Shibata M Orig Life Evol Biosph; 1987; 17(3-4):431-8. PubMed ID: 3627774 [TBL] [Abstract][Full Text] [Related]
2. Structural requirements for a primitive adaptor molecule. Raghunathan G; Rein R J Biomol Struct Dyn; 1987 Jun; 4(6):1041-50. PubMed ID: 3270534 [TBL] [Abstract][Full Text] [Related]
3. Transfer RNA structure and coding specificity. II. A D-arm tertiary interaction that restricts coding range. Smith D; Yarus M J Mol Biol; 1989 Apr; 206(3):503-11. PubMed ID: 2469804 [TBL] [Abstract][Full Text] [Related]
4. Species-specific microhelix aminoacylation by a eukaryotic pathogen tRNA synthetase dependent on a single base pair. Quinn CL; Tao N; Schimmel P Biochemistry; 1995 Oct; 34(39):12489-95. PubMed ID: 7547995 [TBL] [Abstract][Full Text] [Related]
5. tRNA engineering for manipulating genetic code. Katoh T; Iwane Y; Suga H RNA Biol; 2018; 15(4-5):453-460. PubMed ID: 28722545 [TBL] [Abstract][Full Text] [Related]
6. Symmetry recognition hypothesis model for tRNA binding to aminoacyl-tRNA synthetase. Kim S Nature; 1975 Aug; 256(5519):679-81. PubMed ID: 1153005 [No Abstract] [Full Text] [Related]
7. Interaction of aminoacyl-tRNA synthetases with tRNA: general principles and distinguishing characteristics of the high-molecular-weight substrate recognition. Vasil'eva IA; Moor NA Biochemistry (Mosc); 2007 Mar; 72(3):247-63. PubMed ID: 17447878 [TBL] [Abstract][Full Text] [Related]
8. [Role of the anticodon in recognition of tRNA by aminoacyl-tRNA-synthetases]. Kiselev LL Mol Biol (Mosk); 1983; 17(5):928-48. PubMed ID: 6355823 [TBL] [Abstract][Full Text] [Related]
9. Transfer RNA recognition by aminoacyl-tRNA synthetases. Beuning PJ; Musier-Forsyth K Biopolymers; 1999; 52(1):1-28. PubMed ID: 10737860 [TBL] [Abstract][Full Text] [Related]
10. Three conformations of the tRNA and the recognition of the synthetase. Shimizu M Nucleic Acids Symp Ser; 1982; (11):139-42. PubMed ID: 7183956 [TBL] [Abstract][Full Text] [Related]
11. Transfer RNA: a dancer between charging and mis-charging for protein biosynthesis. Zhou X; Wang E Sci China Life Sci; 2013 Oct; 56(10):921-32. PubMed ID: 23982864 [TBL] [Abstract][Full Text] [Related]
12. Structural organization of complexes of transfer RNAs with aminoacyl transfer RNA synthetases. Rich A; Schimmel PR Nucleic Acids Res; 1977; 4(5):1649-65. PubMed ID: 331261 [TBL] [Abstract][Full Text] [Related]
13. Structural analogies between the 3' tRNA-like structure of brome mosaic virus RNA and yeast tRNATyr revealed by protection studies with yeast tyrosyl-tRNA synthetase. Perret V; Florentz C; Dreher T; Giege R Eur J Biochem; 1989 Nov; 185(2):331-9. PubMed ID: 2684668 [TBL] [Abstract][Full Text] [Related]
17. Molecular evolution of transfer RNA from two precursor hairpins: implications for the origin of protein synthesis. Dick TP; Schamel WA J Mol Evol; 1995 Jul; 41(1):1-9. PubMed ID: 7608982 [TBL] [Abstract][Full Text] [Related]
18. A model of synthetase/transfer RNA interaction as deduced by protein engineering. Bedouelle H; Winter G Nature; 1986 Mar 27-Apr 2; 320(6060):371-3. PubMed ID: 3960121 [TBL] [Abstract][Full Text] [Related]
19. Recent results on how aminoacyl transfer RNA synthetases recognize specific transfer RNAs. Schimmel PR Mol Cell Biochem; 1979 May; 25(1):3-14. PubMed ID: 381892 [TBL] [Abstract][Full Text] [Related]
20. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases. Sherlin LD; Bullock TL; Newberry KJ; Lipman RS; Hou YM; Beijer B; Sproat BS; Perona JJ J Mol Biol; 2000 Jun; 299(2):431-46. PubMed ID: 10860750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]