BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 36278020)

  • 1. Glial functions in the blood-brain communication at the circumventricular organs.
    Miyata S
    Front Neurosci; 2022; 16():991779. PubMed ID: 36278020
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of microglia and macrophages in the circumventricular organs of the mouse brain during TLR2-induced fever and sickness responses.
    Murayama S; Kurganov E; Miyata S
    J Neuroimmunol; 2019 Sep; 334():576973. PubMed ID: 31170673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains.
    Miyata S
    Front Neurosci; 2015; 9():390. PubMed ID: 26578857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transient increase of microglial C1q expression in the circumventricular organs of adult mouse during LPS-induced inflammation.
    Kawai S; Kurganov E; Miyata S
    Cell Biochem Funct; 2020 Jun; 38(4):392-400. PubMed ID: 31904875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heterogeneous vascular permeability and alternative diffusion barrier in sensory circumventricular organs of adult mouse brain.
    Morita S; Furube E; Mannari T; Okuda H; Tatsumi K; Wanaka A; Miyata S
    Cell Tissue Res; 2016 Feb; 363(2):497-511. PubMed ID: 26048259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain.
    Langlet F; Mullier A; Bouret SG; Prevot V; Dehouck B
    J Comp Neurol; 2013 Oct; 521(15):3389-405. PubMed ID: 23649873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toll-like receptor 4 agonist and antagonist lipopolysaccharides modify innate immune response in rat brain circumventricular organs.
    Vargas-Caraveo A; Sayd A; Robledo-Montaña J; Caso JR; Madrigal JLM; García-Bueno B; Leza JC
    J Neuroinflammation; 2020 Jan; 17(1):6. PubMed ID: 31906991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depletion of microglia and macrophages with clodronate liposomes attenuates zymosan-induced Fos expression and hypothermia in the adult mouse.
    Takagi S; Murayama S; Torii K; Takemura-Morita S; Kurganov E; Nagaoka S; Wanaka A; Miyata S
    J Neuroimmunol; 2020 Jul; 344():577244. PubMed ID: 32330748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The circumventricular organs.
    Kaur C; Ling EA
    Histol Histopathol; 2017 Sep; 32(9):879-892. PubMed ID: 28177105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microglia in Circumventricular Organs: The Pineal Gland Example.
    Muñoz EM
    ASN Neuro; 2022; 14():17590914221135697. PubMed ID: 36317305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microglial proliferation attenuates sickness responses in adult mice during endotoxin-induced inflammation.
    Torii K; Takagi S; Yoshimura R; Miyata S
    J Neuroimmunol; 2022 Apr; 365():577832. PubMed ID: 35192968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain Region-dependent Heterogeneity and Dose-dependent Difference in Transient Microglia Population Increase during Lipopolysaccharide-induced Inflammation.
    Furube E; Kawai S; Inagaki H; Takagi S; Miyata S
    Sci Rep; 2018 Feb; 8(1):2203. PubMed ID: 29396567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ENaC γ-expressing astrocytes in the circumventricular organs, white matter, and ventral medullary surface: sites for Na+ regulation by glial cells.
    Miller RL; Loewy AD
    J Chem Neuroanat; 2013 Nov; 53():72-80. PubMed ID: 24145067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Permeability of the windows of the brain: feasibility of dynamic contrast-enhanced MRI of the circumventricular organs.
    Verheggen ICM; de Jong JJA; van Boxtel MPJ; Postma AA; Verhey FRJ; Jansen JFA; Backes WH
    Fluids Barriers CNS; 2020 Oct; 17(1):66. PubMed ID: 33115484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elevated expression of glucose transporter-1 in hypothalamic ependymal cells not involved in the formation of the brain-cerebrospinal fluid barrier.
    Garcia MA; Carrasco M; Godoy A; Reinicke K; Montecinos VP; Aguayo LG; Tapia JC; Vera JC; Nualart F
    J Cell Biochem; 2001; 80(4):491-503. PubMed ID: 11169733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of neural stem cells and their progeny in the sensory circumventricular organs of adult mouse.
    Furube E; Morita M; Miyata S
    Cell Tissue Res; 2015 Nov; 362(2):347-65. PubMed ID: 25994374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vascular endothelial growth factor-dependent angiogenesis and dynamic vascular plasticity in the sensory circumventricular organs of adult mouse brain.
    Morita S; Furube E; Mannari T; Okuda H; Tatsumi K; Wanaka A; Miyata S
    Cell Tissue Res; 2015 Mar; 359(3):865-84. PubMed ID: 25573819
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different vascular permeability between the sensory and secretory circumventricular organs of adult mouse brain.
    Morita S; Miyata S
    Cell Tissue Res; 2012 Aug; 349(2):589-603. PubMed ID: 22584508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circumventricular Organs and Parasite Neurotropism: Neglected Gates to the Brain?
    Bentivoglio M; Kristensson K; Rottenberg ME
    Front Immunol; 2018; 9():2877. PubMed ID: 30619260
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 20.