BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 36278174)

  • 1. How does plasticity of migration help tumor cells to avoid treatment: Cytoskeletal regulators and potential markers.
    Alexandrova A; Lomakina M
    Front Pharmacol; 2022; 13():962652. PubMed ID: 36278174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells.
    Alexandrova AY; Chikina AS; Svitkina TM
    Int Rev Cell Mol Biol; 2020; 356():197-256. PubMed ID: 33066874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transition from mesenchymal to bleb-based motility is predominantly exhibited by CD133-positive subpopulation of fibrosarcoma cells.
    Chikina AS; Rubtsova SN; Lomakina ME; Potashnikova DM; Vorobjev IA; Alexandrova AY
    Biol Cell; 2019 Oct; 111(10):245-261. PubMed ID: 31403697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rac and Rho GTPases in cancer cell motility control.
    Parri M; Chiarugi P
    Cell Commun Signal; 2010 Sep; 8():23. PubMed ID: 20822528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypoxia Induces a HIF-1-Dependent Transition from Collective-to-Amoeboid Dissemination in Epithelial Cancer Cells.
    Lehmann S; Te Boekhorst V; Odenthal J; Bianchi R; van Helvert S; Ikenberg K; Ilina O; Stoma S; Xandry J; Jiang L; Grenman R; Rudin M; Friedl P
    Curr Biol; 2017 Feb; 27(3):392-400. PubMed ID: 28089517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual Targeting of Mesenchymal and Amoeboid Motility Hinders Metastatic Behavior.
    Jones BC; Kelley LC; Loskutov YV; Marinak KM; Kozyreva VK; Smolkin MB; Pugacheva EN
    Mol Cancer Res; 2017 Jun; 15(6):670-682. PubMed ID: 28235899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ROCK signaling mediates the adoption of different modes of migration and invasion in human mammary epithelial tumor cells.
    Torka R; Thuma F; Herzog V; Kirfel G
    Exp Cell Res; 2006 Nov; 312(19):3857-71. PubMed ID: 17010335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The emerging role of microtubules in invasion plasticity.
    Legátová A; Pelantová M; Rösel D; Brábek J; Škarková A
    Front Oncol; 2023; 13():1118171. PubMed ID: 36860323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth factor induced activation of Rho and Rac GTPases and actin cytoskeletal reorganization in human lens epithelial cells.
    Maddala R; Reddy VN; Epstein DL; Rao V
    Mol Vis; 2003 Jul; 9():329-36. PubMed ID: 12876554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plasticity of cancer cell invasion: Patterns and mechanisms.
    Wu JS; Jiang J; Chen BJ; Wang K; Tang YL; Liang XH
    Transl Oncol; 2021 Jan; 14(1):100899. PubMed ID: 33080522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytoskeletal Dynamics in Epithelial-Mesenchymal Transition: Insights into Therapeutic Targets for Cancer Metastasis.
    Datta A; Deng S; Gopal V; Yap KC; Halim CE; Lye ML; Ong MS; Tan TZ; Sethi G; Hooi SC; Kumar AP; Yap CT
    Cancers (Basel); 2021 Apr; 13(8):. PubMed ID: 33919917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of actin polymerization and adhesion to extracellular matrix in Rac- and Rho-induced cytoskeletal reorganization.
    Machesky LM; Hall A
    J Cell Biol; 1997 Aug; 138(4):913-26. PubMed ID: 9265656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The receptor for urokinase-plasminogen activator (uPAR) controls plasticity of cancer cell movement in mesenchymal and amoeboid migration style.
    Margheri F; Luciani C; Taddei ML; Giannoni E; Laurenzana A; Biagioni A; Chillà A; Chiarugi P; Fibbi G; Del Rosso M
    Oncotarget; 2014 Mar; 5(6):1538-53. PubMed ID: 24681666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FilGAP, a Rho/Rho-associated protein kinase-regulated GTPase-activating protein for Rac, controls tumor cell migration.
    Saito K; Ozawa Y; Hibino K; Ohta Y
    Mol Biol Cell; 2012 Dec; 23(24):4739-50. PubMed ID: 23097497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reduced expression of the ROCK inhibitor Rnd3 is associated with increased invasiveness and metastatic potential in mesenchymal tumor cells.
    Belgiovine C; Frapolli R; Bonezzi K; Chiodi I; Favero F; Mello-Grand M; Dei Tos AP; Giulotto E; Taraboletti G; D'Incalci M; Mondello C
    PLoS One; 2010 Nov; 5(11):e14154. PubMed ID: 21209796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical view on migration modes.
    Mierke CT
    Cell Adh Migr; 2015; 9(5):367-79. PubMed ID: 26192136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lovastatin-induced cytoskeletal reorganization in lens epithelial cells: role of Rho GTPases.
    Maddala RL; Reddy VN; Rao PV
    Invest Ophthalmol Vis Sci; 2001 Oct; 42(11):2610-5. PubMed ID: 11581207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic Plasticity of Cancer Cells Based on Remodeling of the Actin Cytoskeleton and Adhesive Structures.
    Rubtsova SN; Zhitnyak IY; Gloushankova NA
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33673054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis.
    Wolf K; Mazo I; Leung H; Engelke K; von Andrian UH; Deryugina EI; Strongin AY; Bröcker EB; Friedl P
    J Cell Biol; 2003 Jan; 160(2):267-77. PubMed ID: 12527751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of MT1-MMP and MMP-2 by leptin in cardiac fibroblasts involves Rho/ROCK-dependent actin cytoskeletal reorganization and leads to enhanced cell migration.
    Schram K; Ganguly R; No EK; Fang X; Thong FS; Sweeney G
    Endocrinology; 2011 May; 152(5):2037-47. PubMed ID: 21385940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.