BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36278516)

  • 41. Mitochondria Localize to Injured Axons to Support Regeneration.
    Han SM; Baig HS; Hammarlund M
    Neuron; 2016 Dec; 92(6):1308-1323. PubMed ID: 28009276
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Microtubules and axon regeneration in C. elegans.
    Chen L
    Mol Cell Neurosci; 2018 Sep; 91():160-166. PubMed ID: 29551667
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Endocannabinoid signaling regulates regenerative axon navigation in Caenorhabditis elegans via the GPCRs NPR-19 and NPR-32.
    Pastuhov SI; Matsumoto K; Hisamoto N
    Genes Cells; 2016 Jul; 21(7):696-705. PubMed ID: 27193416
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polarity mediates asymmetric trafficking of the Gbeta heterotrimeric G-protein subunit GPB-1 in C. elegans embryos.
    Thyagarajan K; Afshar K; Gönczy P
    Development; 2011 Jul; 138(13):2773-82. PubMed ID: 21652650
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Axon Regeneration Is Regulated by Ets-C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways.
    Li C; Hisamoto N; Matsumoto K
    PLoS Genet; 2015 Oct; 11(10):e1005603. PubMed ID: 26484536
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gene-Silencing Screen for Mammalian Axon Regeneration Identifies Inpp5f (Sac2) as an Endogenous Suppressor of Repair after Spinal Cord Injury.
    Zou Y; Stagi M; Wang X; Yigitkanli K; Siegel CS; Nakatsu F; Cafferty WB; Strittmatter SM
    J Neurosci; 2015 Jul; 35(29):10429-39. PubMed ID: 26203138
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The autophagy-related kinase UNC-51 and its binding partner UNC-14 regulate the subcellular localization of the Netrin receptor UNC-5 in Caenorhabditis elegans.
    Ogura K; Goshima Y
    Development; 2006 Sep; 133(17):3441-50. PubMed ID: 16887826
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An organelle gatekeeper function for Caenorhabditis elegans UNC-16 (JIP3) at the axon initial segment.
    Edwards SL; Yu SC; Hoover CM; Phillips BC; Richmond JE; Miller KG
    Genetics; 2013 May; 194(1):143-61. PubMed ID: 23633144
    [TBL] [Abstract][Full Text] [Related]  

  • 49. RPM-1, a Caenorhabditis elegans protein that functions in presynaptic differentiation, negatively regulates axon outgrowth by controlling SAX-3/robo and UNC-5/UNC5 activity.
    Li H; Kulkarni G; Wadsworth WG
    J Neurosci; 2008 Apr; 28(14):3595-603. PubMed ID: 18385318
    [TBL] [Abstract][Full Text] [Related]  

  • 50. CLEC-38, a transmembrane protein with C-type lectin-like domains, negatively regulates UNC-40-mediated axon outgrowth and promotes presynaptic development in Caenorhabditis elegans.
    Kulkarni G; Li H; Wadsworth WG
    J Neurosci; 2008 Apr; 28(17):4541-50. PubMed ID: 18434533
    [TBL] [Abstract][Full Text] [Related]  

  • 51. UNC-16 alters DLK-1 localization and negatively regulates actin and microtubule dynamics in Caenorhabditis elegans regenerating neurons.
    Kulkarni SS; Sabharwal V; Sheoran S; Basu A; Matsumoto K; Hisamoto N; Ghosh-Roy A; Koushika SP
    Genetics; 2021 Nov; 219(3):. PubMed ID: 34740241
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pioneer Axon Navigation Is Controlled by AEX-3, a Guanine Nucleotide Exchange Factor for RAB-3 in Caenorhabditis elegans.
    Bhat JM; Hutter H
    Genetics; 2016 Jul; 203(3):1235-47. PubMed ID: 27116976
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The mRNA Decay Factor CAR-1/LSM14 Regulates Axon Regeneration via Mitochondrial Calcium Dynamics.
    Tang NH; Kim KW; Xu S; Blazie SM; Yee BA; Yeo GW; Jin Y; Chisholm AD
    Curr Biol; 2020 Mar; 30(5):865-876.e7. PubMed ID: 31983639
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Insulin/IGF1 signaling inhibits age-dependent axon regeneration.
    Byrne AB; Walradt T; Gardner KE; Hubbert A; Reinke V; Hammarlund M
    Neuron; 2014 Feb; 81(3):561-73. PubMed ID: 24440228
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Repulsive guidance molecule acts in axon branching in Caenorhabditis elegans.
    Tsutsui K; Kim HS; Yoshikata C; Kimura K; Kubota Y; Shibata Y; Tian C; Liu J; Nishiwaki K
    Sci Rep; 2021 Nov; 11(1):22370. PubMed ID: 34785759
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The core apoptotic executioner proteins CED-3 and CED-4 promote initiation of neuronal regeneration in Caenorhabditis elegans.
    Pinan-Lucarre B; Gabel CV; Reina CP; Hulme SE; Shevkoplyas SS; Slone RD; Xue J; Qiao Y; Weisberg S; Roodhouse K; Sun L; Whitesides GM; Samuel A; Driscoll M
    PLoS Biol; 2012; 10(5):e1001331. PubMed ID: 22629231
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Inhibiting poly(ADP-ribosylation) improves axon regeneration.
    Byrne AB; McWhirter RD; Sekine Y; Strittmatter SM; Miller DM; Hammarlund M
    Elife; 2016 Oct; 5():. PubMed ID: 27697151
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The microtubule minus-end-binding protein patronin/PTRN-1 is required for axon regeneration in C. elegans.
    Chuang M; Goncharov A; Wang S; Oegema K; Jin Y; Chisholm AD
    Cell Rep; 2014 Nov; 9(3):874-83. PubMed ID: 25437544
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Axon regeneration mechanisms: insights from C. elegans.
    Chen L; Chisholm AD
    Trends Cell Biol; 2011 Oct; 21(10):577-84. PubMed ID: 21907582
    [TBL] [Abstract][Full Text] [Related]  

  • 60. UNC-6 expression by the vulval precursor cells of Caenorhabditis elegans is required for the complex axon guidance of the HSN neurons.
    Asakura T; Ogura K; Goshima Y
    Dev Biol; 2007 Apr; 304(2):800-10. PubMed ID: 17320069
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.