These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36278630)

  • 1. Enhanced In Vitro Biocompatible Polycaprolactone/Nano-Hydroxyapatite Scaffolds with Near-Field Direct-Writing Melt Electrospinning Technology.
    Chen Z; Liu Y; Huang J; Wang H; Hao M; Hu X; Qian X; Fan J; Yang H; Yang B
    J Funct Biomater; 2022 Sep; 13(4):. PubMed ID: 36278630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influences of Process Parameters of Near-Field Direct-Writing Melt Electrospinning on Performances of Polycaprolactone/Nano-Hydroxyapatite Scaffolds.
    Chen Z; Liu Y; Huang J; Hao M; Hu X; Qian X; Fan J; Yang H; Yang B
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration.
    Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B
    J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation and characterization of new nano-composite scaffolds loaded with vascular stents.
    Xu H; Su J; Sun J; Ren T
    Int J Mol Sci; 2012; 13(3):3366-3381. PubMed ID: 22489156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun fibrous scaffolds combined with nanoscale hydroxyapatite induce osteogenic differentiation of human periodontal ligament cells.
    Wu X; Miao L; Yao Y; Wu W; Liu Y; Chen X; Sun W
    Int J Nanomedicine; 2014; 9():4135-43. PubMed ID: 25206304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Gelatin/PCL Electrospun Fiber Mat with Bone Powder and the Study of Its Biocompatibility.
    Rong D; Chen P; Yang Y; Li Q; Wan W; Fang X; Zhang J; Han Z; Tian J; Ouyang J
    J Funct Biomater; 2016 Mar; 7(1):. PubMed ID: 26959071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y; Zhou P; Cheng X; Xie Y; Liang C; Li C; Xu S
    Int J Nanomedicine; 2013; 8():4197-213. PubMed ID: 24204147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel layer-structured scaffold with large pore sizes suitable for 3D cell culture prepared by near-field electrospinning.
    He FL; Li DW; He J; Liu YY; Ahmad F; Liu YL; Deng X; Ye YJ; Yin DC
    Mater Sci Eng C Mater Biol Appl; 2018 May; 86():18-27. PubMed ID: 29525092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printing PCL/nHA bone scaffolds: exploring the influence of material synthesis techniques.
    Zimmerling A; Yazdanpanah Z; Cooper DML; Johnston JD; Chen X
    Biomater Res; 2021 Jan; 25(1):3. PubMed ID: 33499957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-hydroxyapatite-incorporated polycaprolactone nanofibrous scaffold as a dentin tissue engineering-based strategy for vital pulp therapy.
    Mendes Soares IP; Anselmi C; Kitagawa FA; Ribeiro RAO; Leite ML; de Souza Costa CA; Hebling J
    Dent Mater; 2022 Jun; 38(6):960-977. PubMed ID: 35331551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content.
    He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J
    Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomimetic 3D-printed PCL scaffold containing a high concentration carbonated-nanohydroxyapatite with immobilized-collagen for bone tissue engineering: enhanced bioactivity and physicomechanical characteristics.
    Moghaddaszadeh A; Seddiqi H; Najmoddin N; Abbasi Ravasjani S; Klein-Nulend J
    Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34670200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Naringin-loaded gelatin-microsphere/nano-hydroxyapatite/silk fibroin composite scaffold promoted healing of critical-size vertebral defects in ovariectomised rat.
    Yu X; Shen G; Shang Q; Zhang Z; Zhao W; Zhang P; Liang D; Ren H; Jiang X
    Int J Biol Macromol; 2021 Dec; 193(Pt A):510-518. PubMed ID: 34710477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering.
    Hokmabad VR; Davaran S; Aghazadeh M; Rahbarghazi R; Salehi R; Ramazani A
    J Biomater Appl; 2019 Mar; 33(8):1128-1144. PubMed ID: 30651055
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improvement of mechanical and antibacterial properties of porous nHA scaffolds by fluorinated graphene oxide.
    Xu Z; Li Y; Xu D; Li L; Xu Y; Chen L; Liu Y; Sun J
    RSC Adv; 2022 Sep; 12(39):25405-25414. PubMed ID: 36199313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Restoration of critical defects in the rabbit mandible using osteoblasts and vascular endothelial cells co-cultured with vascular stent-loaded nano-composite scaffolds.
    Xu HZ; Su JS
    J Mech Behav Biomed Mater; 2021 Dec; 124():104831. PubMed ID: 34555626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration.
    Wang Z; Wang H; Xiong J; Li J; Miao X; Lan X; Liu X; Wang W; Cai N; Tang Y
    Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112287. PubMed ID: 34474838
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study.
    Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C
    Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional printed bone scaffolds: The role of nano/micro-hydroxyapatite particles on the adhesion and differentiation of human mesenchymal stem cells.
    Domingos M; Gloria A; Coelho J; Bartolo P; Ciurana J
    Proc Inst Mech Eng H; 2017 Jun; 231(6):555-564. PubMed ID: 28056713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.