These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36278671)

  • 1. The Colours of Octopus: Using Spectral Data to Measure Octopus Camouflage.
    Nahmad-Rohen L; Qureshi YH; Vorobyev M
    Vision (Basel); 2022 Sep; 6(4):. PubMed ID: 36278671
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rockpool gobies change colour for camouflage.
    Stevens M; Lown AE; Denton AM
    PLoS One; 2014; 9(10):e110325. PubMed ID: 25333382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plain-Body Octopus's (
    Kawashima S; Yasumuro H; Ikeda Y
    Zoolog Sci; 2021 Oct; 38(5):383-396. PubMed ID: 34664913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal Use by Octopuses in Agonistic Interactions.
    Scheel D; Godfrey-Smith P; Lawrence M
    Curr Biol; 2016 Feb; 26(3):377-82. PubMed ID: 26832440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperspectral imaging of cuttlefish camouflage indicates good color match in the eyes of fish predators.
    Chiao CC; Wickiser JK; Allen JJ; Genter B; Hanlon RT
    Proc Natl Acad Sci U S A; 2011 May; 108(22):9148-53. PubMed ID: 21576487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing colour for camouflage and visibility using deep learning: the effects of the environment and the observer's visual system.
    Fennell JG; Talas L; Baddeley RJ; Cuthill IC; Scott-Samuel NE
    J R Soc Interface; 2019 May; 16(154):20190183. PubMed ID: 31138092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Camouflaging in a complex environment--octopuses use specific features of their surroundings for background matching.
    Josef N; Amodio P; Fiorito G; Shashar N
    PLoS One; 2012; 7(5):e37579. PubMed ID: 22649542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changeable camouflage: how well can flounder resemble the colour and spatial scale of substrates in their natural habitats?
    Akkaynak D; Siemann LA; Barbosa A; Mäthger LM
    R Soc Open Sci; 2017 Mar; 4(3):160824. PubMed ID: 28405370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modelling colour constancy in fish: implications for vision and signalling in water.
    Wilkins L; Marshall NJ; Johnsen S; Osorio D
    J Exp Biol; 2016 Jun; 219(Pt 12):1884-92. PubMed ID: 27045090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of hue in visual search for texture differences: Implications for camouflage design.
    Stuart GW; Yip D; Hogendoorn H
    Vision Res; 2020 Nov; 176():16-26. PubMed ID: 32768744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cephalopod chromatophores: neurobiology and natural history.
    Messenger JB
    Biol Rev Camb Philos Soc; 2001 Nov; 76(4):473-528. PubMed ID: 11762491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pterin-pigmented nanospheres create the colours of the polymorphic damselfly Ischnura elegans.
    Henze MJ; Lind O; Wilts BD; Kelber A
    J R Soc Interface; 2019 Apr; 16(153):20180785. PubMed ID: 30991898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A "Mimic Octopus" in the Atlantic: Flatfish mimicry and camouflage by Macrotritopus defilippi.
    Hanlon RT; Watson AC; Barbosa A
    Biol Bull; 2010 Feb; 218(1):15-24. PubMed ID: 20203250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Triggerfish uses chromaticity and lightness for object segregation.
    Mitchell L; Cheney KL; Cortesi F; Marshall NJ; Vorobyev M
    R Soc Open Sci; 2017 Dec; 4(12):171440. PubMed ID: 29308267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying phenotype-environment matching in the protected Kerry spotted slug (Mollusca: Gastropoda) using digital photography: exposure to UV radiation determines cryptic colour morphs.
    O'Hanlon A; Feeney K; Dockery P; Gormally MJ
    Front Zool; 2017; 14():35. PubMed ID: 28702067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colour change of twig-mimicking peppered moth larvae is a continuous reaction norm that increases camouflage against avian predators.
    Eacock A; Rowland HM; Edmonds N; Saccheri IJ
    PeerJ; 2017; 5():e3999. PubMed ID: 29158965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tadpoles respond to background colour under threat.
    Eterovick PC; Mendes IS; Kloh JS; Pinheiro LT; Václav ABHP; Santos T; Gontijo ASB
    Sci Rep; 2018 Mar; 8(1):4085. PubMed ID: 29511273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eye-independent, light-activated chromatophore expansion (LACE) and expression of phototransduction genes in the skin of Octopus bimaculoides.
    Ramirez MD; Oakley TH
    J Exp Biol; 2015 May; 218(Pt 10):1513-20. PubMed ID: 25994633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-recognition mechanism between skin and suckers prevents octopus arms from interfering with each other.
    Nesher N; Levy G; Grasso FW; Hochner B
    Curr Biol; 2014 Jun; 24(11):1271-5. PubMed ID: 24835454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Camouflage, communication and thermoregulation: lessons from colour changing organisms.
    Stuart-Fox D; Moussalli A
    Philos Trans R Soc Lond B Biol Sci; 2009 Feb; 364(1516):463-70. PubMed ID: 19000973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.