These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 36278699)

  • 21. The jumping mechanism of cicada Cercopis vulnerata (Auchenorrhyncha, Cercopidae): skeleton-muscle organisation, frictional surfaces, and inverse-kinematic model of leg movements.
    Gorb SN
    Arthropod Struct Dev; 2004 Jul; 33(3):201-20. PubMed ID: 18089035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and simulation analysis of a bionic ostrich robot.
    Chen G; Wei N; Li J; Lu H
    Biomech Model Mechanobiol; 2022 Dec; 21(6):1781-1801. PubMed ID: 35962248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determining the influence of muscle operating length on muscle performance during frog swimming using a bio-robotic model.
    Clemente CJ; Richards C
    Bioinspir Biomim; 2012 Sep; 7(3):036018. PubMed ID: 22677569
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploration of swimming performance for a biomimetic multi-joint robotic fish with a compliant passive joint.
    Chen D; Wu Z; Dong H; Tan M; Yu J
    Bioinspir Biomim; 2020 Dec; 16(2):. PubMed ID: 33105126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Morphological determinants of jumping performance in the Iberian green frog.
    Moreno-Rueda G; Requena-Blanco A; Zamora-Camacho FJ; Comas M; Pascual G
    Curr Zool; 2020 Aug; 66(4):417-424. PubMed ID: 32617090
    [TBL] [Abstract][Full Text] [Related]  

  • 26. On the biomimetic design of agile-robot legs.
    Garcia E; Arevalo JC; Muñoz G; Gonzalez-de-Santos P
    Sensors (Basel); 2011; 11(12):11305-34. PubMed ID: 22247667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybrid Inspired Research on the Flying-Jumping Locomotion of Locusts Using Robot Counterpart.
    Wei D; Gao T; Li Z; Mo X; Zheng S; Zhou C
    Front Neurorobot; 2019; 13():87. PubMed ID: 31708764
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Jumping dynamics of aquatic animals.
    Chang B; Myeong J; Virot E; Clanet C; Kim HY; Jung S
    J R Soc Interface; 2019 Mar; 16(152):20190014. PubMed ID: 30836892
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinematic Decoupling Analysis and Design of a Biomimetic Robotic Elbow Joint.
    Cui B; Chen L; Xie Y; Wang Z
    Appl Bionics Biomech; 2018; 2018():4613230. PubMed ID: 29853994
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Jumping mechanism in the marsh beetles (Coleoptera: Scirtidae).
    Nadein K; Kovalev A; Gorb SN
    Sci Rep; 2022 Sep; 12(1):15834. PubMed ID: 36138092
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Built for jumping: the design of the frog muscular system.
    Lutz GJ; Rome LC
    Science; 1994 Jan; 263(5145):370-2. PubMed ID: 8278808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Jumping robots: a biomimetic solution to locomotion across rough terrain.
    Armour R; Paskins K; Bowyer A; Vincent J; Megill W; Bomphrey R
    Bioinspir Biomim; 2007 Sep; 2(3):S65-82. PubMed ID: 17848786
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Jumping mechanisms and performance in beetles. II. Weevils (Coleoptera: Curculionidae: Rhamphini).
    Nadein K; Betz O
    Arthropod Struct Dev; 2018 Mar; 47(2):131-143. PubMed ID: 29496627
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Work and power output in the hindlimb muscles of Cuban tree frogs Osteopilus septentrionalis during jumping.
    Peplowski MM; Marsh RL
    J Exp Biol; 1997 Nov; 200(Pt 22):2861-70. PubMed ID: 9344973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stable and Fast Planar Jumping Control Design for a Compliant One-Legged Robot.
    Luo G; Du R; Song S; Yuan H; Huang Z; Zhou H; Gu J
    Micromachines (Basel); 2022 Aug; 13(8):. PubMed ID: 36014183
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Designing minimal and scalable insect-inspired multi-locomotion millirobots.
    Zhakypov Z; Mori K; Hosoda K; Paik J
    Nature; 2019 Jul; 571(7765):381-386. PubMed ID: 31292552
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resilin and chitinous cuticle form a composite structure for energy storage in jumping by froghopper insects.
    Burrows M; Shaw SR; Sutton GP
    BMC Biol; 2008 Sep; 6():41. PubMed ID: 18826572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of water and terrestrial jumping in natural and robotic insects.
    Koh JS; Baek SM; Kim B; Cho KJ; Kim HY
    Ann N Y Acad Sci; 2024 Jul; 1537(1):13-31. PubMed ID: 38896114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insect-inspired jumping robots: challenges and solutions to jump stability.
    Ribak G
    Curr Opin Insect Sci; 2020 Dec; 42():32-38. PubMed ID: 32920181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional evolution of jumping in frogs: Interspecific differences in take-off and landing.
    Reilly SM; Montuelle SJ; Schmidt A; Krause C; Naylor E; Essner RL
    J Morphol; 2016 Mar; 277(3):379-93. PubMed ID: 26711888
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.