These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36278810)

  • 1. Rapid crystallization of amorphous solid water by porosity induction.
    Vishwakarma G; Malla BK; Methikkalam RRJ; Pradeep T
    Phys Chem Chem Phys; 2022 Nov; 24(42):26200-26210. PubMed ID: 36278810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Communication: Distinguishing between bulk and interface-enhanced crystallization in nanoscale films of amorphous solid water.
    Yuan C; Smith RS; Kay BD
    J Chem Phys; 2017 Jan; 146(3):031102. PubMed ID: 28109238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallization growth rates and front propagation in amorphous solid water films.
    Smith RS; Yuan C; Petrik NG; Kimmel GA; Kay BD
    J Chem Phys; 2019 Jun; 150(21):214703. PubMed ID: 31176348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deposition and crystallization studies of thin amorphous solid water films on Ru(0001) and on CO-precovered Ru(0001).
    Kondo T; Kato HS; Bonn M; Kawai M
    J Chem Phys; 2007 Sep; 127(9):094703. PubMed ID: 17824755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal and nonthermal physiochemical processes in nanoscale films of amorphous solid water.
    Smith RS; Petrik NG; Kimmel GA; Kay BD
    Acc Chem Res; 2012 Jan; 45(1):33-42. PubMed ID: 21627126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphology and crystallization kinetics of compact (HGW) and porous (ASW) amorphous water ice.
    Maté B; Rodríguez-Lazcano Y; Herrero VJ
    Phys Chem Chem Phys; 2012 Aug; 14(30):10595-602. PubMed ID: 22752009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization kinetics and excess free energy of H2O and D2O nanoscale films of amorphous solid water.
    Smith RS; Matthiesen J; Knox J; Kay BD
    J Phys Chem A; 2011 Jun; 115(23):5908-17. PubMed ID: 21218834
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Desorption-induced evolution of cubic and hexagonal ices in an ultrahigh vacuum and cryogenic temperatures.
    Vishwakarma G; Ghosh J; Pradeep T
    Phys Chem Chem Phys; 2021 Oct; 23(41):24052-24060. PubMed ID: 34665189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The nucleation rate of crystalline ice in amorphous solid water.
    Safarik DJ; Mullins CB
    J Chem Phys; 2004 Sep; 121(12):6003-10. PubMed ID: 15367028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trapping and release of CO2 guest molecules by amorphous ice.
    Malyk S; Kumi G; Reisler H; Wittig C
    J Phys Chem A; 2007 Dec; 111(51):13365-70. PubMed ID: 18047299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleation and growth of crystalline ices from amorphous ices.
    Tonauer CM; Fidler LR; Giebelmann J; Yamashita K; Loerting T
    J Chem Phys; 2023 Apr; 158(14):141001. PubMed ID: 37061482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the interaction of amorphous solid water on a hydrophobic surface: dewetting and crystallization kinetics of ASW on carbon tetrachloride.
    May RA; Smith RS; Kay BD
    Phys Chem Chem Phys; 2011 Nov; 13(44):19848-55. PubMed ID: 21881656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of thermal history on spontaneous polarization and phase transitions of amorphous solid water films studied by contact potential difference measurements.
    Sagi R; Akerman M; Ramakrishnan S; Asscher M
    J Chem Phys; 2020 Oct; 153(14):144702. PubMed ID: 33086797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport in amorphous solid water films: implications for self-diffusivity.
    McClure SM; Barlow ET; Akin MC; Safarik DJ; Truskett TM; Mullins CB
    J Phys Chem B; 2006 Sep; 110(36):17987-97. PubMed ID: 16956290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphological change during crystallization of thin amorphous solid water films on Ru(0001).
    Kondo T; Kato HS; Bonn M; Kawai M
    J Chem Phys; 2007 May; 126(18):181103. PubMed ID: 17508785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Molecular Volcano Revisited: Determination of Crack Propagation and Distribution During the Crystallization of Nanoscale Amorphous Solid Water Films.
    May RA; Smith RS; Kay BD
    J Phys Chem Lett; 2012 Feb; 3(3):327-31. PubMed ID: 26285846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influences of 1-Propanol and Methanol Additives on Crystallization of Thin Amorphous Solid Water Films.
    Souda R; Aizawa T; Nagao T
    Langmuir; 2022 Nov; 38(47):14422-14429. PubMed ID: 36383433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The release of trapped gases from amorphous solid water films. II. "Bottom-up" induced desorption pathways.
    Alan May R; Scott Smith R; Kay BD
    J Chem Phys; 2013 Mar; 138(10):104502. PubMed ID: 23514504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amorphous solid water films: transport and guest-host interactions with CO2 and N2O dopants.
    Kumi G; Malyk S; Hawkins S; Reisler H; Wittig C
    J Phys Chem A; 2006 Feb; 110(6):2097-105. PubMed ID: 16466243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thickness dependent homogeneous crystallization of ultrathin amorphous solid water films.
    Harada K; Sugimoto T; Kato F; Watanabe K; Matsumoto Y
    Phys Chem Chem Phys; 2020 Jan; 22(4):1963-1973. PubMed ID: 31939467
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.