BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 36278840)

  • 1. Imaging and Editing the Phospholipidome.
    Chiu DC; Baskin JM
    Acc Chem Res; 2022 Nov; 55(21):3088-3098. PubMed ID: 36278840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Click chemistry and optogenetic approaches to visualize and manipulate phosphatidic acid signaling.
    Tei R; Baskin JM
    J Biol Chem; 2022 Apr; 298(4):101810. PubMed ID: 35276134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. IMPACT: Imaging phospholipase d activity with clickable alcohols via transphosphatidylation.
    Bumpus TW; Liang D; Baskin JM
    Methods Enzymol; 2020; 641():75-94. PubMed ID: 32713538
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatiotemporal control of phosphatidic acid signaling with optogenetic, engineered phospholipase Ds.
    Tei R; Baskin JM
    J Cell Biol; 2020 Mar; 219(3):. PubMed ID: 31999306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A real-time, click chemistry imaging approach reveals stimulus-specific subcellular locations of phospholipase D activity.
    Liang D; Wu K; Tei R; Bumpus TW; Ye J; Baskin JM
    Proc Natl Acad Sci U S A; 2019 Jul; 116(31):15453-15462. PubMed ID: 31311871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-based directed evolution of a membrane editor in mammalian cells.
    Tei R; Bagde SR; Fromme JC; Baskin JM
    Nat Chem; 2023 Jul; 15(7):1030-1039. PubMed ID: 37217787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ex Uno Plura: Differential Labeling of Phospholipid Biosynthetic Pathways with a Single Bioorthogonal Alcohol.
    Bumpus TW; Liang FJ; Baskin JM
    Biochemistry; 2018 Jan; 57(2):226-230. PubMed ID: 29095606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding of the roles of phospholipase D and phosphatidic acid through their binding partners.
    Jang JH; Lee CS; Hwang D; Ryu SH
    Prog Lipid Res; 2012 Apr; 51(2):71-81. PubMed ID: 22212660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Chemoenzymatic Strategy for Imaging Cellular Phosphatidic Acid Synthesis.
    Bumpus TW; Baskin JM
    Angew Chem Int Ed Engl; 2016 Oct; 55(42):13155-13158. PubMed ID: 27633714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An indirect pathway of receptor-mediated 1,2-diacylglycerol formation in mast cells. I. IgE receptor-mediated activation of phospholipase D.
    Gruchalla RS; Dinh TT; Kennerly DA
    J Immunol; 1990 Mar; 144(6):2334-42. PubMed ID: 2138197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Clickable Substrate Mimics Enable Imaging of Phospholipase D Activity.
    Bumpus TW; Baskin JM
    ACS Cent Sci; 2017 Oct; 3(10):1070-1077. PubMed ID: 29104923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of interfacial binding in the activation of Streptomyces chromofuscus phospholipase D by phosphatidic acid.
    Stieglitz K; Seaton B; Roberts MF
    J Biol Chem; 1999 Dec; 274(50):35367-74. PubMed ID: 10585404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phospholipase D and phosphatidic acid in plant defence response: from protein-protein and lipid-protein interactions to hormone signalling.
    Zhao J
    J Exp Bot; 2015 Apr; 66(7):1721-36. PubMed ID: 25680793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Organelle-Selective Membrane Labeling through Phospholipase D-Mediated Transphosphatidylation.
    Chiu DC; Baskin JM
    JACS Au; 2022 Dec; 2(12):2703-2713. PubMed ID: 36590261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Click chemistry-enabled CRISPR screening reveals GSK3 as a regulator of PLD signaling.
    Bumpus TW; Huang S; Tei R; Baskin JM
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34810254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of proteolytically processed phospholipase D from Streptomyces chromofuscus to phosphatidylcholine membranes facilitates vesicle aggregation and fusion.
    Stieglitz KA; Seaton BA; Roberts MF
    Biochemistry; 2001 Nov; 40(46):13954-63. PubMed ID: 11705386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of phospholipase D activity and phosphatidic acid production after purinergic (P2Y6) receptor stimulation.
    Scott SA; Xiang Y; Mathews TP; Cho HP; Myers DS; Armstrong MD; Tallman KA; O'Reilly MC; Lindsley CW; Brown HA
    J Biol Chem; 2013 Jul; 288(28):20477-87. PubMed ID: 23723068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipid signalling mediated by PLD/PA modulates proline and H
    Peppino Margutti M; Reyna M; Meringer MV; Racagni GE; Villasuso AL
    Plant Physiol Biochem; 2017 Apr; 113():149-160. PubMed ID: 28214728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shedding light on lipid metabolism in Kinetoplastida: A phylogenetic analysis of phospholipase D protein homologs.
    Plonski NM; Bissoni B; Arachchilage MH; Romstedt K; Kooijman EE; Piontkivska H
    Gene; 2018 May; 656():95-105. PubMed ID: 29501621
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Platelet-activating factor stimulates phosphatidic acid formation in cultured rat mesangial cells: roles of phospholipase D, diglyceride kinase, and de novo phospholipid synthesis.
    Kester M
    J Cell Physiol; 1993 Aug; 156(2):317-25. PubMed ID: 8393878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.