BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 36278950)

  • 1. Hemilabile Amine-Functionalized Efficient Azo-Aromatic Cu-Catalysts Inspired by Galactose Oxidase: Impact of Amine Sidearm on Catalytic Aerobic Oxidation of Alcohols.
    Khatua M; Goswami B; Hans S; Kamal ; Mazumder S; Samanta S
    Inorg Chem; 2022 Nov; 61(44):17777-17789. PubMed ID: 36278950
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of copper(I)/TEMPO-catalyzed aerobic alcohol oxidation.
    Hoover JM; Ryland BL; Stahl SS
    J Am Chem Soc; 2013 Feb; 135(6):2357-67. PubMed ID: 23317450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical studies on the reaction mechanism of oxidation of primary alcohols by Zn/Cu(ii)-phenoxyl radical catalyst.
    Cheng L; Wang J; Wang M; Wu Z
    Dalton Trans; 2009 May; (17):3286-97. PubMed ID: 19421631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic Aerobic Oxidation of Alcohols by Copper Complexes Bearing Redox-Active Ligands with Tunable H-Bonding Groups.
    Rajabimoghadam K; Darwish Y; Bashir U; Pitman D; Eichelberger S; Siegler MA; Swart M; Garcia-Bosch I
    J Am Chem Soc; 2018 Dec; 140(48):16625-16634. PubMed ID: 30400740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Azide-Alkyne "Click" Reaction in Water Using Parts-Per-Million Amine-Functionalized Azoaromatic Cu(I) Complex as Catalyst: Effect of the Amine Side Arm.
    Khatua M; Goswami B; Kamal ; Samanta S
    Inorg Chem; 2021 Dec; 60(23):17537-17554. PubMed ID: 34806366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic reaction profile for alcohol oxidation by galactose oxidase.
    Whittaker MM; Whittaker JW
    Biochemistry; 2001 Jun; 40(24):7140-8. PubMed ID: 11401560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aerial oxidation of primary alcohols and amines catalyzed by Cu(II) complexes of 2,2'-selenobis(4,6-di-tert-butylphenol) providing [O,Se,O]-donor atoms.
    Paine TK; Weyhermüller T; Wieghardt K; Chaudhuri P
    Dalton Trans; 2004 Jul; (14):2092-101. PubMed ID: 15249944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature-independent catalytic two-electron reduction of dioxygen by ferrocenes with a copper(II) tris[2-(2-pyridyl)ethyl]amine catalyst in the presence of perchloric acid.
    Das D; Lee YM; Ohkubo K; Nam W; Karlin KD; Fukuzumi S
    J Am Chem Soc; 2013 Feb; 135(7):2825-34. PubMed ID: 23394287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactions of copper(II)-H2O2 adducts supported by tridentate bis(2-pyridylmethyl)amine ligands: sensitivity to solvent and variations in ligand substitution.
    Kunishita A; Scanlon JD; Ishimaru H; Honda K; Ogura T; Suzuki M; Cramer CJ; Itoh S
    Inorg Chem; 2008 Sep; 47(18):8222-32. PubMed ID: 18698765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational exploration of the mechanism of alcohol oxidation by dioxygen activated with biquinolyl-containing cu complexes.
    Polestshuk PM; Magdesieva TV
    Inorg Chem; 2010 Apr; 49(7):3370-86. PubMed ID: 20184372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced catalytic four-electron dioxygen (O2) and two-electron hydrogen peroxide (H2O2) reduction with a copper(II) complex possessing a pendant ligand pivalamido group.
    Kakuda S; Peterson RL; Ohkubo K; Karlin KD; Fukuzumi S
    J Am Chem Soc; 2013 May; 135(17):6513-22. PubMed ID: 23509853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Copper(I)-dioxygen reactivity of [(L)Cu(I)](+) (L = tris(2-pyridylmethyl)amine): kinetic/thermodynamic and spectroscopic studies concerning the formation of Cu-O2 and Cu2-O2 adducts as a function of solvent medium and 4-pyridyl ligand substituent variations.
    Zhang CX; Kaderli S; Costas M; Kim EI; Neuhold YM; Karlin KD; Zuberbühler AD
    Inorg Chem; 2003 Mar; 42(6):1807-24. PubMed ID: 12639113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ligand-derived oxidase activity. Catalytic aerial oxidation of alcohols (including methanol) by Cu(II)-diradical complexes.
    Mukherjee C; Pieper U; Bothe E; Bachler V; Bill E; Weyhermüller T; Chaudhuri P
    Inorg Chem; 2008 Oct; 47(19):8943-56. PubMed ID: 18754615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorous biphasic catalysis: synthesis and characterization of copper(I) and copper(II) fluoroponytailed 1,4,7-Rf-TACN and 2,2'-Rf-bipyridine complexes--their catalytic activity in the oxidation of hydrocarbons, olefins, and alcohols, including mechanistic implications.
    Contel M; Izuel C; Laguna M; Villuendas PR; Alonso PJ; Fish RH
    Chemistry; 2003 Sep; 9(17):4168-78. PubMed ID: 12953202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Could redox-switched binding of a redox-active ligand to a copper(II) centre drive a conformational proton pump gate? A synthetic model study.
    He Z; Colbran SB; Craig DC
    Chemistry; 2003 Jan; 9(1):116-29. PubMed ID: 12506370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mannich base Cu(II) complexes as biomimetic oxidative catalyst.
    Kundu BK; Ranjan R; Mukherjee A; Mobin SM; Mukhopadhyay S
    J Inorg Biochem; 2019 Jun; 195():164-173. PubMed ID: 30954693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic metal-radical reactivity: aerial oxidation of alcohols, amines, aminophenols and catechols catalyzed by transition metal complexes.
    Chaudhuri P; Wieghardt K; Weyhermüller T; Paine TK; Mukherjee S; Mukherjee C
    Biol Chem; 2005 Oct; 386(10):1023-33. PubMed ID: 16218874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation and Aerobic Oxidative Catalysis of a Cu(II) Superoxo Complex Supported by a Redox-Active Ligand.
    Czaikowski ME; McNeece AJ; Boyn JN; Jesse KA; Anferov SW; Filatov AS; Mazziotti DA; Anderson JS
    J Am Chem Soc; 2022 Aug; 144(34):15569-15580. PubMed ID: 35977083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the effect of amine versus imine ligands of copper(II) complexes in 2-aminophenol oxidation.
    Mohammed TP; George A; Sivaramakrishnan MP; Vadivelu P; Balasubramanian S; Sankaralingam M
    J Inorg Biochem; 2023 Oct; 247():112309. PubMed ID: 37451084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.