These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36278967)

  • 1. Prebiotic Vesicles Retain Solutes and Grow by Micelle Addition after Brief Cooling below the Membrane Melting Temperature.
    Cohen ZR; Todd ZR; Catling DC; Black RA; Keller SL
    Langmuir; 2022 Nov; 38(44):13407-13413. PubMed ID: 36278967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prebiotic Protocell Membranes Retain Encapsulated Contents during Flocculation, and Phospholipids Preserve Encapsulation during Dehydration.
    Cohen ZR; Cornell CE; Catling DC; Black RA; Keller SL
    Langmuir; 2022 Jan; 38(3):1304-1310. PubMed ID: 35026114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermostability of model protocell membranes.
    Mansy SS; Szostak JW
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13351-5. PubMed ID: 18768808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA catalysis in model protocell vesicles.
    Chen IA; Salehi-Ashtiani K; Szostak JW
    J Am Chem Soc; 2005 Sep; 127(38):13213-9. PubMed ID: 16173749
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupled growth and division of model protocell membranes.
    Zhu TF; Szostak JW
    J Am Chem Soc; 2009 Apr; 131(15):5705-13. PubMed ID: 19323552
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical evolution of amphiphiles: glycerol monoacyl derivatives stabilize plausible prebiotic membranes.
    Maurer SE; Deamer DW; Boncella JM; Monnard PA
    Astrobiology; 2009 Dec; 9(10):979-87. PubMed ID: 20041750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prebiotic cell membranes that survive extreme environmental pressure conditions.
    Kapoor S; Berghaus M; Suladze S; Prumbaum D; Grobelny S; Degen P; Raunser S; Winter R
    Angew Chem Int Ed Engl; 2014 Aug; 53(32):8397-401. PubMed ID: 24953643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prebiotic Membranes and Micelles Do Not Inhibit Peptide Formation During Dehydration.
    Cohen ZR; Kessenich BL; Hazra A; Nguyen J; Johnson RS; MacCoss MJ; Lalic G; Black RA; Keller SL
    Chembiochem; 2022 Feb; 23(3):e202100614. PubMed ID: 34881485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Template-directed synthesis of a genetic polymer in a model protocell.
    Mansy SS; Schrum JP; Krishnamurthy M; Tobé S; Treco DA; Szostak JW
    Nature; 2008 Jul; 454(7200):122-5. PubMed ID: 18528332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermotropic characterization of the 2-O-acyl,polyprenyl alpha-D-glucopyranoside isolated from palmitate-enriched Acholeplasma laidlawii B membranes.
    Lewis RN; Yue AW; McElhaney RN; Turner DC; Gruner SM
    Biochim Biophys Acta; 1990 Jul; 1026(1):21-8. PubMed ID: 2378878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prebiotic amino acids bind to and stabilize prebiotic fatty acid membranes.
    Cornell CE; Black RA; Xue M; Litz HE; Ramsay A; Gordon M; Mileant A; Cohen ZR; Williams JA; Lee KK; Drobny GP; Keller SL
    Proc Natl Acad Sci U S A; 2019 Aug; 116(35):17239-17244. PubMed ID: 31405964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth of Prebiotically Plausible Fatty Acid Vesicles Proceeds in the Presence of Prebiotic Amino Acids, Dipeptides, Sugars, and Nucleic Acid Components.
    Todd ZR; Cohen ZR; Catling DC; Keller SL; Black RA
    Langmuir; 2022 Dec; 38(49):15106-15112. PubMed ID: 36445982
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Double Emulsion Droplets as a Plausible Step to Fatty Acid Protocells.
    Douliez JP
    Small Methods; 2023 Dec; 7(12):e2300530. PubMed ID: 37574259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copying of Mixed-Sequence RNA Templates inside Model Protocells.
    O'Flaherty DK; Kamat NP; Mirza FN; Li L; Prywes N; Szostak JW
    J Am Chem Soc; 2018 Apr; 140(15):5171-5178. PubMed ID: 29608310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermally Driven Membrane Phase Transitions Enable Content Reshuffling in Primitive Cells.
    Rubio-Sánchez R; O'Flaherty DK; Wang A; Coscia F; Petris G; Di Michele L; Cicuta P; Bonfio C
    J Am Chem Soc; 2021 Oct; 143(40):16589-16598. PubMed ID: 34597506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Concentration-driven growth of model protocell membranes.
    Budin I; Debnath A; Szostak JW
    J Am Chem Soc; 2012 Dec; 134(51):20812-9. PubMed ID: 23198690
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclophospholipids Enable a Protocellular Life Cycle.
    Toparlak ÖD; Sebastianelli L; Egas Ortuno V; Karki M; Xing Y; Szostak JW; Krishnamurthy R; Mansy SS
    ACS Nano; 2023 Dec; 17(23):23772-23783. PubMed ID: 38038709
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of growth temperature on the thermotropic behavior of the membranes of a thermophilic Bacillus. Composition-structure-function relationships.
    Reizer J; Grossowicz N; Barenholz Y
    Biochim Biophys Acta; 1985 May; 815(2):268-80. PubMed ID: 3995029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between environmental temperature, cell growth and the fluidity and physical state of the membrane lipids in Bacillus stearothermophilus.
    McElhaney RN; Souza KA
    Biochim Biophys Acta; 1976 Sep; 443(3):348-59. PubMed ID: 183821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed fatty acid-phospholipid protocell networks.
    Põldsalu I; Köksal ES; Gözen I
    Phys Chem Chem Phys; 2021 Dec; 23(47):26948-26954. PubMed ID: 34842249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.