These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 36279054)
1. High-resolution, spatially resolved quantification of wind erosion rates based on UAV images (case study: Sistan region, southeastern Iran). Poormorteza S; Gholami H; Rashki A; Moradi N Environ Sci Pollut Res Int; 2023 Feb; 30(8):21694-21707. PubMed ID: 36279054 [TBL] [Abstract][Full Text] [Related]
2. Investigation of wind erosion process for estimation, prevention, and control of DSS in Yazd-Ardakan plain. Ekhtesasi MR; Sepehr A Environ Monit Assess; 2009 Dec; 159(1-4):267-80. PubMed ID: 19052891 [TBL] [Abstract][Full Text] [Related]
3. Analysis of some factors related to dust storms occurrence in the Sistan region. Namdari S; Valizadeh Kamran K; Sorooshian A Environ Sci Pollut Res Int; 2021 Sep; 28(33):45450-45458. PubMed ID: 33866504 [TBL] [Abstract][Full Text] [Related]
4. Hierarchical cluster analysis to identify the homogeneous desertification management units. Zolfaghari F; Khosravi H; Shahriyari A; Jabbari M; Abolhasani A PLoS One; 2019; 14(12):e0226355. PubMed ID: 31851718 [TBL] [Abstract][Full Text] [Related]
5. Unmanned aerial vehicle (UAV)-based monitoring of a landslide: Gallenzerkogel landslide (Ybbs-Lower Austria) case study. Eker R; Aydın A; Hübl J Environ Monit Assess; 2017 Dec; 190(1):28. PubMed ID: 29256067 [TBL] [Abstract][Full Text] [Related]
6. Evaluating temporal sand drift potential trends in the Sistan region, Southeast Iran. Rahdari MR; Caballero-Calvo A; Kharazmi R; Rodrigo-Comino J Environ Sci Pollut Res Int; 2023 Dec; 30(57):120266-120283. PubMed ID: 37938486 [TBL] [Abstract][Full Text] [Related]
7. Projecting the impacts of climate change on the wind erosion potential using an ensemble of GCMs in Hormozgan Coastal plains, Iran. Khodraz Z; Akbarian M; Khoorani A Environ Monit Assess; 2023 Nov; 195(12):1445. PubMed ID: 37945771 [TBL] [Abstract][Full Text] [Related]
8. Spatially explicit quantification of total soil erosion by RTK GPS in wind and water eroded croplands. Zhang Z; Luo J; Chen B Sci Total Environ; 2020 Feb; 702():134716. PubMed ID: 31726344 [TBL] [Abstract][Full Text] [Related]
9. The Impact of Residences and Roads on Wind Erosion in a Temperate Grassland Ecosystem: A Spatially Oriented Perspective. Zhou Z; Zhang Z; Zhang W; Luo J; Zhang K; Cao Z; Wang Z Int J Environ Res Public Health; 2022 Dec; 20(1):. PubMed ID: 36612520 [TBL] [Abstract][Full Text] [Related]
10. [Quantitative monitoring of gully erosion in hilly-gully area of Loess Plateau based on aerial images]. Wang H; Wang TM; Yang MB; Xiong YC; Sun TT; Shi GJ; Ge JP Ying Yong Sheng Tai Xue Bao; 2008 Jan; 19(1):127-32. PubMed ID: 18419084 [TBL] [Abstract][Full Text] [Related]
11. Field scale spatio-temporal variability of wind erosion transport capacity and soil loss at Urmia Lake. Azimzadeh HR; Derakhshan Z; Shirgahi F Environ Res; 2022 Dec; 215(Pt 1):114250. PubMed ID: 36084671 [TBL] [Abstract][Full Text] [Related]
12. Application of Unmanned Aerial Vehicle DEM in flood modeling and comparison with global DEMs: Case study of Atrak River Basin, Iran. Parizi E; Khojeh S; Hosseini SM; Moghadam YJ J Environ Manage; 2022 Sep; 317():115492. PubMed ID: 35751286 [TBL] [Abstract][Full Text] [Related]
13. Using Cesium-137 technique to study the characteristics of different aspect of soil erosion in the Wind-water Erosion Crisscross Region on Loess Plateau of China. Li M; Li ZB; Liu PL; Yao WY Appl Radiat Isot; 2005 Jan; 62(1):109-13. PubMed ID: 15498692 [TBL] [Abstract][Full Text] [Related]
14. Beryllium-7 measurements of wind erosion on sloping fields in the wind-water erosion crisscross region on the Chinese Loess Plateau. Zhang J; Yang M; Deng X; Liu Z; Zhang F; Zhou W Sci Total Environ; 2018 Feb; 615():240-252. PubMed ID: 28968583 [TBL] [Abstract][Full Text] [Related]
15. A new integrated data mining model to map spatial variation in the susceptibility of land to act as a source of aeolian dust. Gholami H; Mohammadifar A; Pourghasemi HR; Collins AL Environ Sci Pollut Res Int; 2020 Nov; 27(33):42022-42039. PubMed ID: 32700281 [TBL] [Abstract][Full Text] [Related]
16. Land susceptibility to water and wind erosion risks in the East Africa region. Fenta AA; Tsunekawa A; Haregeweyn N; Poesen J; Tsubo M; Borrelli P; Panagos P; Vanmaercke M; Broeckx J; Yasuda H; Kawai T; Kurosaki Y Sci Total Environ; 2020 Feb; 703():135016. PubMed ID: 31734497 [TBL] [Abstract][Full Text] [Related]
17. Temporal and spatial variation of episodic wind erosion in unburned and burned semiarid shrubland. Whicker JJ; Breshears DD; Wasiolek PT; Kirchner TB; Tavani RA; Schoep DA; Rodgers JC J Environ Qual; 2002; 31(2):599-612. PubMed ID: 11931452 [TBL] [Abstract][Full Text] [Related]
18. Combining exposed tree roots and UAV imagery to quantify land denudation in central Mexico. Franco-Ramos O; Ballesteros-Cánovas JA; Terrazas T; Vázquez-Selem L; Figueroa-García JE; Stoffel M Sci Total Environ; 2023 Jul; 880():163265. PubMed ID: 37028671 [TBL] [Abstract][Full Text] [Related]
19. Ecological site‐based assessments of wind and water erosion: informing accelerated soil erosion management in rangelands. Webb NP; Herrick JE; Duniway MC Ecol Appl; 2014; 24(6):1405-20. PubMed ID: 29160663 [TBL] [Abstract][Full Text] [Related]
20. An investigation into climatic and terrestrial drivers of dust storms in the Sistan region of Iran in the early twenty-first century. Miri A; Maleki S; Middleton N Sci Total Environ; 2021 Feb; 757():143952. PubMed ID: 33307404 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]