These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36279056)

  • 1. A bibliometric and content analysis of research trends on GIS-based landslide susceptibility from 2001 to 2020.
    Huang J; Wu X; Ling S; Li X; Wu Y; Peng L; He Z
    Environ Sci Pollut Res Int; 2022 Dec; 29(58):86954-86993. PubMed ID: 36279056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of Causative Factors for Landslide Susceptibility Evaluation Using Remote Sensing and GIS Data in Parts of Niigata, Japan.
    Dou J; Tien Bui D; Yunus AP; Jia K; Song X; Revhaug I; Xia H; Zhu Z
    PLoS One; 2015; 10(7):e0133262. PubMed ID: 26214691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel evolutionary combination of artificial intelligence algorithm and machine learning for landslide susceptibility mapping in the west of Iran.
    Shen Y; Ahmadi Dehrashid A; Bahar RA; Moayedi H; Nasrollahizadeh B
    Environ Sci Pollut Res Int; 2023 Dec; 30(59):123527-123555. PubMed ID: 37987977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated Landslide-Risk Prediction Using Web GIS and Machine Learning Models.
    Tengtrairat N; Woo WL; Parathai P; Aryupong C; Jitsangiam P; Rinchumphu D
    Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GIS-based landslide susceptibility mapping in the Longmen Mountain area (China) using three different machine learning algorithms and their comparison.
    Huang Z; Peng L; Li S; Liu Y; Zhou S
    Environ Sci Pollut Res Int; 2023 Aug; 30(38):88612-88626. PubMed ID: 37440134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China).
    Wang Y; Sun D; Wen H; Zhang H; Zhang F
    Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32545618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating stratified best-worst method and GIS for landslide susceptibility assessment: a case study in Erzurum province (Turkey).
    Konurhan Z; Yucesan M; Gul M
    Environ Sci Pollut Res Int; 2023 Nov; 30(53):113978-114000. PubMed ID: 37858024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring machine learning and statistical approach techniques for landslide susceptibility mapping in Siwalik Himalayan Region using geospatial technology.
    Saha A; Tripathi L; Villuri VGK; Bhardwaj A
    Environ Sci Pollut Res Int; 2024 Feb; 31(7):10443-10459. PubMed ID: 38198087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Landslide Susceptibility Mapping Using Machine Learning Algorithm Validated by Persistent Scatterer In-SAR Technique.
    Hussain MA; Chen Z; Zheng Y; Shoaib M; Shah SU; Ali N; Afzal Z
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation Model in Rwanda.
    Nsengiyumva JB; Luo G; Nahayo L; Huang X; Cai P
    Int J Environ Res Public Health; 2018 Jan; 15(2):. PubMed ID: 29385096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Landslide susceptibility assessment using the Weight of Evidence method: A case study in Xunyang area, China.
    Cao Y; Wei X; Fan W; Nan Y; Xiong W; Zhang S
    PLoS One; 2021; 16(1):e0245668. PubMed ID: 33493200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new combined approach of neural-metaheuristic algorithms for predicting and appraisal of landslide susceptibility mapping.
    Moayedi H; Dehrashid AA
    Environ Sci Pollut Res Int; 2023 Jul; 30(34):82964-82989. PubMed ID: 37336850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Convolutional neural network (CNN) with metaheuristic optimization algorithms for landslide susceptibility mapping in Icheon, South Korea.
    Hakim WL; Rezaie F; Nur AS; Panahi M; Khosravi K; Lee CW; Lee S
    J Environ Manage; 2022 Mar; 305():114367. PubMed ID: 34968941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Slide type landslide susceptibility assessment of the Büyük Menderes watershed using artificial neural network method.
    Tekin S; Çan T
    Environ Sci Pollut Res Int; 2022 Jul; 29(31):47174-47188. PubMed ID: 35178630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GIS-based landslide susceptibility mapping using heuristic and bivariate statistical methods for Iva Valley and environs Southeast Nigeria.
    Ozioko OH; Igwe O
    Environ Monit Assess; 2020 Jan; 192(2):119. PubMed ID: 31950278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into geospatial heterogeneity of landslide susceptibility based on the SHAP-XGBoost model.
    Zhang J; Ma X; Zhang J; Sun D; Zhou X; Mi C; Wen H
    J Environ Manage; 2023 Apr; 332():117357. PubMed ID: 36731409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Landslide susceptibility prediction improvements based on a semi-integrated supervised machine learning model.
    Yang N; Wang R; Liu Z; Yao Z
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):50280-50294. PubMed ID: 36792857
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China.
    Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q
    Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landslide susceptibility mapping by integrating analytical hierarchy process, frequency ratio, and fuzzy gamma operator models, case study: North of Lorestan Province, Iran.
    Eitvandi N; Sarikhani R; Derikvand S
    Environ Monit Assess; 2022 Jul; 194(9):600. PubMed ID: 35864313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach.
    Singh A; Ashuli A; C NK; Dhiman N; Dubey CS; Shukla DP
    Environ Sci Pollut Res Int; 2024 Sep; 31(41):53767-53784. PubMed ID: 37563510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.