These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 36279317)

  • 1. Highly Selective FRET-Aided Single-Molecule Counting of MicroRNAs Labeled by Splinted Ligation.
    Joo S; Lee UJ; Son HY; Kim M; Huh YM; Lee TG; Lee M
    ACS Sens; 2022 Nov; 7(11):3409-3415. PubMed ID: 36279317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid quantification of miRNAs using dynamic FRET-FISH.
    Kim J; Kang C; Shin S; Hohng S
    Commun Biol; 2022 Oct; 5(1):1072. PubMed ID: 36207395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-Molecule Sensor for High-Confidence Detection of miRNA.
    Wijesinghe KM; Kanak MA; Harrell JC; Dhakal S
    ACS Sens; 2022 Apr; 7(4):1086-1094. PubMed ID: 35312280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive and specific miRNA detection method using SplintR Ligase.
    Jin J; Vaud S; Zhelkovsky AM; Posfai J; McReynolds LA
    Nucleic Acids Res; 2016 Jul; 44(13):e116. PubMed ID: 27154271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-Measurement Multiplexed Quantification of MicroRNAs from Human Tissue Using Catalytic Hairpin Assembly and Förster Resonance Energy Transfer.
    Xu J; Guo J; Golob-Schwarzl N; Haybaeck J; Qiu X; Hildebrandt N
    ACS Sens; 2020 Jun; 5(6):1768-1776. PubMed ID: 32438801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly specific quantification of microRNA by coupling probe-rolling circle amplification and Förster resonance energy transfer.
    Wu X; Zhu S; Huang P; Chen Y
    Anal Biochem; 2016 Jun; 502():16-23. PubMed ID: 26973220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A guide to accelerated direct digital counting of single nucleic acid molecules by FRET-based intramolecular kinetic fingerprinting.
    Mandal S; Khanna K; Johnson-Buck A; Walter NG
    Methods; 2022 Jan; 197():63-73. PubMed ID: 34182140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence-enhanced p19 proteins-conjugated single quantum dot with multiplex antenna for one-step, specific and sensitive miRNAs detection.
    Ren X; Xue Q; Wen L; Li X; Wang H
    Anal Chim Acta; 2019 Apr; 1053():114-121. PubMed ID: 30712556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Target-assisted FRET signal amplification for ultrasensitive detection of microRNA.
    Wang B; You Z; Ren D
    Analyst; 2019 Mar; 144(7):2304-2311. PubMed ID: 30672513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A compact fiber-integrated optofluidic platform for highly specific microRNA Förster resonance energy transfer detection.
    Feng H; Liu L; Chen Y; Shu W; Huang Y; Zhang B; Wu T; Jin Z; Chen Y
    Analyst; 2021 Jul; 146(14):4454-4460. PubMed ID: 33982715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple, Amplified, and Multiplexed Detection of MicroRNAs Using Time-Gated FRET and Hybridization Chain Reaction.
    Guo J; Mingoes C; Qiu X; Hildebrandt N
    Anal Chem; 2019 Feb; 91(4):3101-3109. PubMed ID: 30657312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interbase-FRET binding assay for pre-microRNAs.
    Bood M; Del Nogal AW; Nilsson JR; Edfeldt F; Dahlén A; Lemurell M; Wilhelmsson LM; Grøtli M
    Sci Rep; 2021 Apr; 11(1):9396. PubMed ID: 33931703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A rapid, ratiometric, enzyme-free, and sensitive single-step miRNA detection using three-way junction based FRET probes.
    Luo Q; Liu L; Yang C; Yuan J; Feng H; Chen Y; Zhao P; Yu Z; Jin Z
    Nanotechnology; 2018 Mar; 29(11):114001. PubMed ID: 29337292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitive and specific microRNA detection by RNA dependent DNA ligation and rolling circle optical signal amplification.
    Zhou C; Huang R; Zhou X; Xing D
    Talanta; 2020 Aug; 216():120954. PubMed ID: 32456939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of Spectral Crosstalk Correction for Improving Multiplexed MicroRNA Detection Using a Single Excitation Wavelength.
    Liu Y; Wei M; Li Y; Liu A; Wei W; Zhang Y; Liu S
    Anal Chem; 2017 Mar; 89(6):3430-3436. PubMed ID: 28247764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dual "turn-on" biosensor based on AIE effect and FRET for in situ detection of miR-125b biomarker in early Alzheimer's disease.
    Zhang Q; Yin B; Huang Y; Gu Y; Yan J; Chen J; Li C; Zhang Y; Wong SHD; Yang M
    Biosens Bioelectron; 2023 Jun; 230():115270. PubMed ID: 37023551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Duplex-Specific Nuclease-Amplified Detection of MicroRNA Using Compact Quantum Dot-DNA Conjugates.
    Wang Y; Howes PD; Kim E; Spicer CD; Thomas MR; Lin Y; Crowder SW; Pence IJ; Stevens MM
    ACS Appl Mater Interfaces; 2018 Aug; 10(34):28290-28300. PubMed ID: 30113161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA functionalized double quantum dots-based fluorescence biosensor for one-step simultaneous detection of multiple microRNAs.
    Hu O; Li Z; Tong Y; Wang Q; Chen Z
    Talanta; 2021 Dec; 235():122763. PubMed ID: 34517624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MnO
    Wang S; Zhang L; Kan A; Xu X; Zhang N; Jiang W
    Talanta; 2021 May; 226():122202. PubMed ID: 33676722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid kinetic fingerprinting of single nucleic acid molecules by a FRET-based dynamic nanosensor.
    Khanna K; Mandal S; Blanchard AT; Tewari M; Johnson-Buck A; Walter NG
    Biosens Bioelectron; 2021 Oct; 190():113433. PubMed ID: 34171818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.