These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 36279358)
1. Human-in-the-Loop Cooperative Control of a Walking Exoskeleton for Following Time-Variable Human Intention. Li Z; Zhang T; Huang P; Li G IEEE Trans Cybern; 2024 Apr; 54(4):2142-2154. PubMed ID: 36279358 [TBL] [Abstract][Full Text] [Related]
2. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking. Bayón C; Keemink AQL; van Mierlo M; Rampeltshammer W; van der Kooij H; van Asseldonk EHF J Neuroeng Rehabil; 2022 Feb; 19(1):21. PubMed ID: 35172846 [TBL] [Abstract][Full Text] [Related]
3. Benchmarking the Effects on Human-Exoskeleton Interaction of Trajectory, Admittance and EMG-Triggered Exoskeleton Movement Control. Rodrigues-Carvalho C; Fernández-García M; Pinto-Fernández D; Sanz-Morere C; Barroso FO; Borromeo S; Rodríguez-Sánchez C; Moreno JC; Del-Ama AJ Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679587 [TBL] [Abstract][Full Text] [Related]
4. Volition-adaptive control for gait training using wearable exoskeleton: preliminary tests with incomplete spinal cord injury individuals. Rajasekaran V; López-Larraz E; Trincado-Alonso F; Aranda J; Montesano L; Del-Ama AJ; Pons JL J Neuroeng Rehabil; 2018 Jan; 15(1):4. PubMed ID: 29298691 [TBL] [Abstract][Full Text] [Related]
5. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning. Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514 [TBL] [Abstract][Full Text] [Related]
6. Simulation on the Effect of Gait Variability, Delays, and Inertia with Respect to Wearer Energy Savings with Exoskeleton Assistance. Fang S; Kinney AL; Reissman ME; Reissman T IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():506-511. PubMed ID: 31374680 [TBL] [Abstract][Full Text] [Related]
7. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment. Wang Y; Liu Z; Feng Z Clin Biomech (Bristol); 2022 May; 95():105660. PubMed ID: 35561659 [TBL] [Abstract][Full Text] [Related]
8. Assisting walking balance using a bio-inspired exoskeleton controller. Afschrift M; van Asseldonk E; van Mierlo M; Bayon C; Keemink A; D'Hondt L; van der Kooij H; De Groote F J Neuroeng Rehabil; 2023 Jun; 20(1):82. PubMed ID: 37370175 [TBL] [Abstract][Full Text] [Related]
9. Human-in-the-Loop Adaptive Control of a Soft Exo-Suit With Actuator Dynamics and Ankle Impedance Adaptation. Li Z; Li Q; Huang P; Xia H; Li G IEEE Trans Cybern; 2023 Dec; 53(12):7920-7932. PubMed ID: 37022863 [TBL] [Abstract][Full Text] [Related]
10. Simulating the effect of ankle plantarflexion and inversion-eversion exoskeleton torques on center of mass kinematics during walking. Bianco NA; Collins SH; Liu K; Delp SL PLoS Comput Biol; 2023 Aug; 19(8):e1010712. PubMed ID: 37549183 [TBL] [Abstract][Full Text] [Related]
11. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
12. Exoskeleton robot control for synchronous walking assistance in repetitive manual handling works based on dual unscented Kalman filter. Sado F; Yap HJ; Ghazilla RAR; Ahmad N PLoS One; 2018; 13(7):e0200193. PubMed ID: 30001415 [TBL] [Abstract][Full Text] [Related]
13. A Unified Gait Phase Estimation and Control of Exoskeleton using Virtual Energy Regulator (VER). Nasiri R; Dinovitzer H; Arami A IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176167 [TBL] [Abstract][Full Text] [Related]
14. Development of VariLeg, an exoskeleton with variable stiffness actuation: first results and user evaluation from the CYBATHLON 2016. Schrade SO; Dätwyler K; Stücheli M; Studer K; Türk DA; Meboldt M; Gassert R; Lambercy O J Neuroeng Rehabil; 2018 Mar; 15(1):18. PubMed ID: 29534730 [TBL] [Abstract][Full Text] [Related]
15. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269 [TBL] [Abstract][Full Text] [Related]
16. Gait Prediction and Variable Admittance Control for Lower Limb Exoskeleton With Measurement Delay and Extended-State-Observer. Chen Z; Guo Q; Li T; Yan Y; Jiang D IEEE Trans Neural Netw Learn Syst; 2023 Nov; 34(11):8693-8706. PubMed ID: 35302939 [TBL] [Abstract][Full Text] [Related]
17. Novel Design and Implementation of a Neuromuscular Controller on a Hip Exoskeleton for Partial Gait Assistance. Messara S; Manzoori AR; Di Russo A; Ijspeert A; Bouri M IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941265 [TBL] [Abstract][Full Text] [Related]
18. Adaptive Neural Control of a Kinematically Redundant Exoskeleton Robot Using Brain-Machine Interfaces. Li Z; Li J; Zhao S; Yuan Y; Kang Y; Chen CLP IEEE Trans Neural Netw Learn Syst; 2019 Dec; 30(12):3558-3571. PubMed ID: 30346293 [TBL] [Abstract][Full Text] [Related]
19. Design of a Purely Mechanical Sensor-Controller Integrated System for Walking Assistance on an Ankle-Foot Exoskeleton. Wang X; Guo S; Qu H; Song M Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31331126 [TBL] [Abstract][Full Text] [Related]
20. Visual guidance can help with the use of a robotic exoskeleton during human walking. Kim M; Jeong H; Kantharaju P; Yoo D; Jacobson M; Shin D; Han C; Patton JL Sci Rep; 2022 Mar; 12(1):3881. PubMed ID: 35273244 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]