BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 36279362)

  • 1. AgeMTPT, a Catalyst for Peptide N-Terminal Modification.
    Cong Y; Scesa PD; Schmidt EW
    ACS Synth Biol; 2022 Nov; 11(11):3699-3705. PubMed ID: 36279362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic N- and C-Protection in Cyanobactin RiPP Natural Products.
    Sardar D; Hao Y; Lin Z; Morita M; Nair SK; Schmidt EW
    J Am Chem Soc; 2017 Mar; 139(8):2884-2887. PubMed ID: 28195477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalysts for the Enzymatic Lipidation of Peptides.
    Zheng Y; Cong Y; Schmidt EW; Nair SK
    Acc Chem Res; 2022 May; 55(9):1313-1323. PubMed ID: 35442036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of Rab5 N-terminal domain dictate prenylation of C-terminal cysteines.
    Sanford JC; Pan Y; Wessling-Resnick M
    Mol Biol Cell; 1995 Jan; 6(1):71-85. PubMed ID: 7749197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A protein geranylgeranyltransferase from bovine brain: implications for protein prenylation specificity.
    Yokoyama K; Goodwin GW; Ghomashchi F; Glomset JA; Gelb MH
    Proc Natl Acad Sci U S A; 1991 Jun; 88(12):5302-6. PubMed ID: 2052607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted reengineering of protein geranylgeranyltransferase type I selectivity functionally implicates active-site residues in protein-substrate recognition.
    Gangopadhyay SA; Losito EL; Hougland JL
    Biochemistry; 2014 Jan; 53(2):434-46. PubMed ID: 24344934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Maturation of isoprenylated proteins in Saccharomyces cerevisiae. Multiple activities catalyze the cleavage of the three carboxyl-terminal amino acids from farnesylated substrates in vitro.
    Hrycyna CA; Clarke S
    J Biol Chem; 1992 May; 267(15):10457-64. PubMed ID: 1587828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Farnesylation and proteolysis are sequential, but distinct steps in the CaaX box modification pathway.
    Farh L; Mitchell DA; Deschenes RJ
    Arch Biochem Biophys; 1995 Apr; 318(1):113-21. PubMed ID: 7726551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of novel peptide substrates for protein farnesyltransferase reveals two substrate classes with distinct sequence selectivities.
    Hougland JL; Hicks KA; Hartman HL; Kelly RA; Watt TJ; Fierke CA
    J Mol Biol; 2010 Jan; 395(1):176-90. PubMed ID: 19878682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-Mining-Based Discovery of the Cyclic Peptide Tolypamide and TolF, a Ser/Thr Forward O-Prenyltransferase.
    Purushothaman M; Sarkar S; Morita M; Gugger M; Schmidt EW; Morinaka BI
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8460-8465. PubMed ID: 33586286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic modification of proteins with a geranylgeranyl isoprenoid.
    Casey PJ; Thissen JA; Moomaw JF
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8631-5. PubMed ID: 1924324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Serine/Threonine Ligation: Origin, Mechanistic Aspects, and Applications.
    Liu H; Li X
    Acc Chem Res; 2018 Jul; 51(7):1643-1655. PubMed ID: 29979577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. N-Terminal Modification of Proteins with Subtiligase Specificity Variants.
    Weeks AM; Wells JA
    Curr Protoc Chem Biol; 2020 Mar; 12(1):e79. PubMed ID: 32074409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis for the broad substrate selectivity of a peptide prenyltransferase.
    Hao Y; Pierce E; Roe D; Morita M; McIntosh JA; Agarwal V; Cheatham TE; Schmidt EW; Nair SK
    Proc Natl Acad Sci U S A; 2016 Dec; 113(49):14037-14042. PubMed ID: 27872314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic generation of peptides flanked by basic amino acids to obtain MS/MS spectra with 2× sequence coverage.
    Ebhardt HA; Nan J; Chaulk SG; Fahlman RP; Aebersold R
    Rapid Commun Mass Spectrom; 2014 Dec; 28(24):2735-43. PubMed ID: 25380496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Recent Advances in Lysine and N-Terminal Bioconjugation for Peptides and Proteins.
    Tantipanjaporn A; Wong MK
    Molecules; 2023 Jan; 28(3):. PubMed ID: 36770752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced carboxypeptidase efficacies and differentiation of peptide epimers.
    Sung YS; Putman J; Du S; Armstrong DW
    Anal Biochem; 2022 Apr; 642():114451. PubMed ID: 34774536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate Specificity of the Flavoenzyme BhaC
    Daniels PN; van der Donk WA
    Biochemistry; 2023 Jan; 62(2):378-387. PubMed ID: 35613706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ribonucleotide reductase R2 protein is phosphorylated at serine-20 by P34cdc2 kinase.
    Chan AK; Persad S; Litchfield DW; Wright JA
    Biochim Biophys Acta; 1999 Jan; 1448(3):363-71. PubMed ID: 9990288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ether cleaving methyltransferases of the strict anaerobe Acetobacterium dehalogenans: controlling the substrate spectrum by genetic engineering of the N-terminus.
    Kreher S; Studenik S; Diekert G
    Mol Microbiol; 2010 Oct; 78(1):230-7. PubMed ID: 20923421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.