These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36279408)

  • 1. Camphene as a Mild, Bio-Derived Porogen for Near-Ambient Processing and 3D Printing of Porous Thermoplastics.
    Self JL; Xiao H; Hausladen MM; Bramanto RA; Usgaonkar SS; Ellison CJ
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):49244-49253. PubMed ID: 36279408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual-Scale Porosity Alumina Structures Using Ceramic/Camphene Suspensions Containing Polymer Microspheres.
    Lee H; Jeon JW; Koh YH; Kim HE
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Foam 3D Printing of Thermoplastics: A Symbiosis of Additive Manufacturing and Foaming Technology.
    Nofar M; Utz J; Geis N; Altstädt V; Ruckdäschel H
    Adv Sci (Weinh); 2022 Apr; 9(11):e2105701. PubMed ID: 35187843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffolds.
    Güney A; Malda J; Dhert WJA; Grijpma DW
    Int J Artif Organs; 2017 May; 40(4):176-184. PubMed ID: 28165584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additive Manufacturing of High-Temperature Thermoplastic Polysulfone with Tailored Microstructure via Precipitation Printing.
    Tu R; Kim HC; Sodano HA
    ACS Appl Mater Interfaces; 2023 Sep; 15(38):45270-45280. PubMed ID: 37698842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D Plotting using Camphene as Pore-regulating Agent to Produce Hierarchical Macro/micro-porous Poly(ε-caprolactone)/calcium phosphate Composite Scaffolds.
    Choi JW; Maeng WY; Koh YH; Lee H; Kim HE
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31438474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution-Based 3D Printing of Polymers of Intrinsic Microporosity.
    Zhang F; Ma Y; Liao J; Breedveld V; Lively RP
    Macromol Rapid Commun; 2018 Jul; 39(13):e1800274. PubMed ID: 29806243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Printability of Poly(lactic acid) Ink by Embedded 3D Printing
    Karyappa R; Liu H; Zhu Q; Hashimoto M
    ACS Appl Mater Interfaces; 2023 May; 15(17):21575-21584. PubMed ID: 37078653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous devices derived from co-continuous polymer blends as a route for controlled drug release.
    Salehi P; Sarazin P; Favis BD
    Biomacromolecules; 2008 Apr; 9(4):1131-8. PubMed ID: 18355029
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pore Architectures and Mechanical Properties of Porous α-SiAlON Ceramics Fabricated via Unidirectional Freeze Casting Based on Camphene-Templating.
    Hou Z; Ye F; Liu Q; Liu L; Jiang H; Zhang S
    Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30813534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of freezing conditions on β-Tricalcium Phosphate /Camphene scaffold with micro sized particles fabricated by freeze casting.
    Singh G; Soundarapandian S
    J Mech Behav Biomed Mater; 2018 Mar; 79():189-194. PubMed ID: 29306082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital Light 3D Printing of Double Thermoplastics with Customizable Mechanical Properties and Versatile Reprocessability.
    Zhu G; von Coelln N; Hou Y; Vazquez-Martel C; Spiegel CA; Tegeder P; Blasco E
    Adv Mater; 2024 Jun; ():e2401561. PubMed ID: 38949414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Additive Manufacturing of Mechanically Isotropic Thin Films and Membranes via Microextrusion 3D Printing of Polymer Solutions.
    Singh M; Haring AP; Tong Y; Cesewski E; Ball E; Jasper R; Davis EM; Johnson BN
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6652-6661. PubMed ID: 30702858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of 3D Printed Multi-Layered Orodispersible Films with Porous Structure Applicable as a Substrate for Inkjet Printing.
    Elbl J; Veselý M; Blaháčková D; Ondruš J; Kulich P; Mašková E; Mašek J; Gajdziok J
    Pharmaceutics; 2023 Feb; 15(2):. PubMed ID: 36840036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vapor-induced phase-separation-enabled versatile direct ink writing.
    Sole-Gras M; Ren B; Ryder BJ; Ge J; Huang J; Chai W; Yin J; Fuchs GE; Wang G; Jiang X; Huang Y
    Nat Commun; 2024 Apr; 15(1):3058. PubMed ID: 38594271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing of Lightweight Polyimide Honeycombs with the High Specific Strength and Temperature Resistance.
    Wang C; Ma S; Li D; Zhao J; Zhou H; Wang D; Zhou D; Gan T; Wang D; Liu C; Qu C; Chen C
    ACS Appl Mater Interfaces; 2021 Apr; 13(13):15690-15700. PubMed ID: 33689262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printed Templating of Extrinsic Freeze-Casting for Macro-Microporous Biomaterials.
    Jung JY; Naleway SE; Maker YN; Kang KY; Lee J; Ha J; Hur SS; Chien S; McKittrick J
    ACS Biomater Sci Eng; 2019 May; 5(5):2122-2133. PubMed ID: 33405715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process.
    Hou Q; Grijpma DW; Feijen J
    J Biomed Mater Res B Appl Biomater; 2003 Nov; 67(2):732-40. PubMed ID: 14598400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recycling of Coal Fly Ash for the Fabrication of Porous Mullite/Alumina Composites.
    Kim KH; Yoon SY; Park HC
    Materials (Basel); 2014 Aug; 7(8):5982-5991. PubMed ID: 28788172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D printing of sacrificial templates into hierarchical porous materials.
    Alison L; Menasce S; Bouville F; Tervoort E; Mattich I; Ofner A; Studart AR
    Sci Rep; 2019 Jan; 9(1):409. PubMed ID: 30674930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.