These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 3627948)

  • 1. The effect of acetylcholine on chloride transport across the mouse lacrimal gland acinar cell membranes.
    Saito Y; Ozawa T; Hayashi H; Nishiyama A
    Pflugers Arch; 1987 Jul; 409(3):280-8. PubMed ID: 3627948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of uphill chloride transport of the mouse lacrimal acinar cells: studies with Cl- -sensitive microelectrode.
    Ozawa T; Saito Y; Nishiyama A
    Pflugers Arch; 1988 Oct; 412(5):509-15. PubMed ID: 3194172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetylcholine-induced change in intracellular Cl- activity of the mouse lacrimal acinar cells.
    Saito Y; Ozawa T; Hayashi H; Nishiyama A
    Pflugers Arch; 1985 Sep; 405(2):108-11. PubMed ID: 4059033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cl(-)-HCO3- antiport in rat lacrimal gland.
    Lambert RW; Bradley ME; Mircheff AK
    Am J Physiol; 1988 Sep; 255(3 Pt 1):G367-73. PubMed ID: 3421339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylcholine-induced Na+ influx in the mouse lacrimal gland acinar cells: demonstration of multiple Na+ transport mechanisms by intracellular Na+ activity measurements.
    Saito Y; Ozawa T; Nishiyama A
    J Membr Biol; 1987; 98(2):135-44. PubMed ID: 3669067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The reserpine-treated rat as an experimental animal model for cystic fibrosis: abnormal Cl transport in pancreatic acinar cells.
    Martinez JR; Martinez AM
    Pediatr Res; 1988 Oct; 24(4):427-32. PubMed ID: 3174287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for an anion exchanger in the mouse lacrimal gland acinar cell membrane.
    Ozawa T; Saito Y; Nishiyama A
    J Membr Biol; 1988 Nov; 105(3):273-80. PubMed ID: 2851657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concentration-dependent effects of disulfonic stilbenes on colonic chloride transport.
    Smith PL; Sullivan SK; McCabe RD
    Am J Physiol; 1986 Jan; 250(1 Pt 1):G44-9. PubMed ID: 3079966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of alpha- and beta-intercalated cell types in rabbit cortical collecting duct.
    Furuya H; Breyer MD; Jacobson HR
    Am J Physiol; 1991 Sep; 261(3 Pt 2):F377-85. PubMed ID: 1887902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chloride transport in rabbit esophageal epithelial cells.
    Abdulnour-Nakhoul S; Nakhoul NL; Caymaz-Bor C; Orlando RC
    Am J Physiol Gastrointest Liver Physiol; 2002 Apr; 282(4):G663-75. PubMed ID: 11897626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific drug sensitive transport pathways for chloride and potassium ions in steady-state Ehrlich mouse ascites tumor cells.
    Aull F
    Biochim Biophys Acta; 1982 Jun; 688(3):740-6. PubMed ID: 7115702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of DIDS on the chick retinal pigment epithelium. I. Membrane potentials, apparent resistances, and mechanisms.
    Gallemore RP; Steinberg RH
    J Neurosci; 1989 Jun; 9(6):1968-76. PubMed ID: 2723761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determinants of the transmembrane distribution of chloride in rat lymphocytes: role of Cl(-)-HCO3- exchange.
    Garcia-Soto JJ; Grinstein S
    Am J Physiol; 1990 Jun; 258(6 Pt 1):C1108-16. PubMed ID: 2163199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intracellular chloride and the mechanism for its accumulation in rat lumbrical muscle.
    Aickin CC; Betz WJ; Harris GL
    J Physiol; 1989 Apr; 411():437-55. PubMed ID: 2515275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basolateral impalement of intestinal villus cells: electrophysiology of Cl- transport.
    White JF; Ellingsen D
    Am J Physiol; 1989 May; 256(5 Pt 1):C1022-32. PubMed ID: 2719092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane potential, resistance, and intercellular communication in the lacrimal gland: effects of acetylcholine and adrenaline.
    Iwatsuki N; Petersen OH
    J Physiol; 1978 Feb; 275():507-20. PubMed ID: 633148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cl- permeability of the basolateral membrane of the Rana esculenta epithelium: activation of Cl-/HCO3- exchange by alkaline intracellular pH.
    Lacoste I; Harvey BJ; Ehrenfeld J
    Biochim Biophys Acta; 1991 Mar; 1063(1):103-10. PubMed ID: 1849743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of chloride ions on electrodiffusion in the membrane of a leaky epithelium. Studies of intact tissue by microelectrodes.
    Zeuthen T
    Pflugers Arch; 1987 Mar; 408(3):267-74. PubMed ID: 3575092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of NaCl secretion in rectal gland tubules of spiny dogfish (Squalus acanthias). II. Effects of inhibitors.
    Greger R; Schlatter E
    Pflugers Arch; 1984 Dec; 402(4):364-75. PubMed ID: 6522244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular Cl- activity in rabbit proximal convoluted tubule perfused in vitro: regulation by sodium and effects of anion transport inhibitors.
    Ishibashi K
    Jpn J Physiol; 1993; 43(5):585-97. PubMed ID: 8145399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.