These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 36279638)
1. Efficient oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid by a two-enzyme system: Combination of a bacterial laccase with catalase. Wei J; Yang L; Feng W Enzyme Microb Technol; 2023 Jan; 162():110144. PubMed ID: 36279638 [TBL] [Abstract][Full Text] [Related]
2. Efficient Catalytic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid by Magnetic Laccase Catalyst. Wang KF; Liu CL; Sui KY; Guo C; Liu CZ Chembiochem; 2018 Apr; 19(7):654-659. PubMed ID: 29334175 [TBL] [Abstract][Full Text] [Related]
3. Effective biosynthesis of 2,5-furandicarboxylic acid from 5-hydroxymethylfurfural via a bi-enzymatic cascade system using bacterial laccase and fungal alcohol oxidase. Yang F; Liu J; Li B; Li H; Jiang Z Biotechnol Biofuels Bioprod; 2023 Nov; 16(1):164. PubMed ID: 37915106 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of 2,5-furandicarboxylic acid by a TEMPO/laccase system coupled with Zou L; Zheng Z; Tan H; Xu Q; Ouyang J RSC Adv; 2020 Jun; 10(37):21781-21788. PubMed ID: 35516629 [TBL] [Abstract][Full Text] [Related]
5. Coupling Natural Halloysite Nanotubes and Bimetallic Pt-Au Alloy Nanoparticles for Highly Efficient and Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Zhong X; Yuan P; Wei Y; Liu D; Losic D; Li M ACS Appl Mater Interfaces; 2022 Jan; 14(3):3949-3960. PubMed ID: 35015494 [TBL] [Abstract][Full Text] [Related]
6. Highly efficient and selective production of FFCA from CotA-TJ102 laccase-catalyzed oxidation of 5-HMF. Zhang C; Chang X; Zhu L; Xing Q; You S; Qi W; Su R; He Z Int J Biol Macromol; 2019 May; 128():132-139. PubMed ID: 30684571 [TBL] [Abstract][Full Text] [Related]
7. Optimizing operational parameters for the enzymatic production of furandicarboxylic acid building block. Sánchez-Ruiz MI; Martínez AT; Serrano A Microb Cell Fact; 2021 Sep; 20(1):180. PubMed ID: 34503517 [TBL] [Abstract][Full Text] [Related]
8. Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid Using O Xu S; Zhou P; Zhang Z; Yang C; Zhang B; Deng K; Bottle S; Zhu H J Am Chem Soc; 2017 Oct; 139(41):14775-14782. PubMed ID: 28956917 [TBL] [Abstract][Full Text] [Related]
9. Complete oxidation of hydroxymethylfurfural to furandicarboxylic acid by aryl-alcohol oxidase. Serrano A; Calviño E; Carro J; Sánchez-Ruiz MI; Cañada FJ; Martínez AT Biotechnol Biofuels; 2019; 12():217. PubMed ID: 31528205 [TBL] [Abstract][Full Text] [Related]
10. Facile Production of 2,5-Furandicarboxylic Acid via Oxidation of Industrially Sourced Crude 5-Hydroxymethylfurfural. Zuo X; Venkitasubramanian P; Martin KJ; Subramaniam B ChemSusChem; 2022 Jul; 15(13):e202102050. PubMed ID: 34913609 [TBL] [Abstract][Full Text] [Related]
11. Screening and Evaluation of New Hydroxymethylfurfural Oxidases for Furandicarboxylic Acid Production. Viñambres M; Espada M; Martínez AT; Serrano A Appl Environ Microbiol; 2020 Aug; 86(16):. PubMed ID: 32503910 [TBL] [Abstract][Full Text] [Related]
12. Bioconversion of 5-Hydroxymethylfurfural (HMF) to 2,5-Furandicarboxylic Acid (FDCA) by a Native Obligate Aerobic Bacterium, Acinetobacter calcoaceticus NL14. Sheng Y; Tan X; Zhou X; Xu Y Appl Biochem Biotechnol; 2020 Oct; 192(2):455-465. PubMed ID: 32394319 [TBL] [Abstract][Full Text] [Related]
13. Production of the 2,5-Furandicarboxylic Acid Bio-Monomer From 5-Hydroxymethylfurfural Over a Molybdenum-Vanadium Oxide Catalyst. Liu J; Wen S; Wang F; Zhu X; Zeng Z; Yin D Front Chem; 2022; 10():853112. PubMed ID: 35372283 [TBL] [Abstract][Full Text] [Related]
14. Highly Efficient Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid with Heteropoly Acids and Ionic Liquids. Chen R; Xin J; Yan D; Dong H; Lu X; Zhang S ChemSusChem; 2019 Jun; 12(12):2715-2724. PubMed ID: 30908861 [TBL] [Abstract][Full Text] [Related]
15. Coupling a recombinant oxidase to catalase through specific noncovalent interaction to improve the oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Han Y; Qu W; Feng W Enzyme Microb Technol; 2021 Oct; 150():109895. PubMed ID: 34489048 [TBL] [Abstract][Full Text] [Related]
17. Enzymatic conversion reactions of 5-hydroxymethylfurfural (HMF) to bio-based Cajnko MM; Novak U; Grilc M; Likozar B Biotechnol Biofuels; 2020; 13():66. PubMed ID: 32308735 [TBL] [Abstract][Full Text] [Related]
18. Purification of biomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2,5-furandicarboxylic Acid. Yi G; Teong SP; Li X; Zhang Y ChemSusChem; 2014 Aug; 7(8):2131-5. PubMed ID: 24889713 [TBL] [Abstract][Full Text] [Related]
19. A Novel 2,5-Furandicarboxylic Acid Biosynthesis Route from Biomass-Derived 5-Hydroxymethylfurfural Based on the Consecutive Enzyme Reactions. Wu S; Liu Q; Tan H; Zhang F; Yin H Appl Biochem Biotechnol; 2020 Aug; 191(4):1470-1482. PubMed ID: 32125648 [TBL] [Abstract][Full Text] [Related]
20. One-Pot Enzyme Cascade for Controlled Synthesis of Furancarboxylic Acids from 5-Hydroxymethylfurfural by H Jia HY; Zong MH; Zheng GW; Li N ChemSusChem; 2019 Nov; 12(21):4764-4768. PubMed ID: 31490638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]