BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36279650)

  • 1. Ultra-trace detection and efficient adsorption removal of multiple water-soluble volatile organic compounds by fluorescent sensor array.
    Che H; Yan S; Xiong M; Nie Y; Tian X; Li Y
    J Hazard Mater; 2023 Feb; 443(Pt A):130182. PubMed ID: 36279650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Film-based fluorescent sensor for visual monitoring and efficient removal of aniline in solutions and gas phase.
    Che H; Yan S; Nie Y; Tian X; Li Y
    J Hazard Mater; 2022 Aug; 435():129016. PubMed ID: 35500347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A gas sensor array for the simultaneous detection of multiple VOCs.
    Zhang Y; Zhao J; Du T; Zhu Z; Zhang J; Liu Q
    Sci Rep; 2017 May; 7(1):1960. PubMed ID: 28512342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Sensing of Multiplex Volatile Organic Compounds by Adsorption and Plasmon Dual-Induced Raman Enhancement Technique.
    Tan Z; Wang J; Xu L; Zheng Q; Han L; Wang C; Liao X
    ACS Sens; 2023 Feb; 8(2):867-874. PubMed ID: 36726333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemiresistive Sensor Array with Nanostructured Interfaces for Detection of Human Breaths with Simulated Lung Cancer Breath VOCs.
    Shang G; Dinh D; Mercer T; Yan S; Wang S; Malaei B; Luo J; Lu S; Zhong CJ
    ACS Sens; 2023 Mar; 8(3):1328-1338. PubMed ID: 36883832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New device for time-averaged measurement of volatile organic compounds (VOCs).
    Santiago Sánchez N; Tejada Alarcón S; Tortajada Santonja R; Llorca-Pórcel J
    Sci Total Environ; 2014 Jul; 485-486():720-725. PubMed ID: 24388502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption and membrane separation for removal and recovery of volatile organic compounds.
    Gan G; Fan S; Li X; Zhang Z; Hao Z
    J Environ Sci (China); 2023 Jan; 123():96-115. PubMed ID: 36522017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A polythiophene/UiO-66 composite coating for extraction of volatile organic compounds migrated from ion-exchange resins prior to their determination by gas chromatography.
    Zhang J; Zhang B; Dang X; Song Z; Hu Y; Chen H
    J Chromatogr A; 2020 Dec; 1633():461627. PubMed ID: 33128970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of the treatability of the primary indoor volatile organic compounds on activated carbon fiber cloths at typical indoor concentrations.
    Yao M; Zhang Q; Hand DW; Perram DL; Taylor R
    J Air Waste Manag Assoc; 2009 Jul; 59(7):882-90. PubMed ID: 19645272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A paper-based cantilever array sensor: Monitoring volatile organic compounds with naked eye.
    Fraiwan A; Lee H; Choi S
    Talanta; 2016 Sep; 158():57-62. PubMed ID: 27343578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Pollution Characteristics and Health Risk Assessment of Volatile Organic Compounds (VOCs) and Semi-volatile Organic Compounds (SVOCs) in Qiantang River's Hangzhou Section During a Water Odor Pollution Event].
    Chen F; Tang FL; Xu JF; Wang YY; Ruan DD; Zhang W; Zhou S
    Huan Jing Ke Xue; 2018 Feb; 39(2):648-654. PubMed ID: 29964827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation-Induced Luminescence Based UiO-66: Highly Selective Fast-Response Styrene Detection.
    Yang F; Ma J; Zhu Q; Ma Z; Wang J
    ACS Appl Mater Interfaces; 2022 May; 14(19):22510-22520. PubMed ID: 35507501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Virtual Sensor Array Based on Piezoelectric Cantilever Resonator for Identification of Volatile Organic Compounds.
    Li D; Zhu B; Pang K; Zhang Q; Qu M; Liu W; Fu Y; Xie J
    ACS Sens; 2022 May; 7(5):1555-1563. PubMed ID: 35549157
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized Detection of Volatile Organic Compounds Utilizing Durable and Selective Arrays of Tailored UiO-66-X SURMOF Sensors.
    Okur S; Hashem T; Bogdanova E; Hodapp P; Heinke L; Bräse S; Wöll C
    ACS Sens; 2024 Feb; 9(2):622-630. PubMed ID: 38320750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation and assessment of volatile organic compounds in water sources in China.
    Liu L; Zhou H
    Environ Monit Assess; 2011 Feb; 173(1-4):825-36. PubMed ID: 20306141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel device based on a fluorescent cross-responsive sensor array for detecting lung cancer related volatile organic compounds.
    Lei JC; Hou CJ; Huo DQ; Luo XG; Bao MZ; Li X; Yang M; Fa HB
    Rev Sci Instrum; 2015 Feb; 86(2):025106. PubMed ID: 25725887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a smartphone-based real time cost-effective VOC sensor.
    Das T; Mohar M
    Heliyon; 2020 Oct; 6(10):e05167. PubMed ID: 33088950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of metal organic fromwork-199 immobilized zeolite foam for adsorption of common indoor VOCs.
    Saini VK; Pires J
    J Environ Sci (China); 2017 May; 55():321-330. PubMed ID: 28477827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual Sensor Array Based on Butterworth-Van Dyke Equivalent Model of QCM for Selective Detection of Volatile Organic Compounds.
    Li D; Xie Z; Qu M; Zhang Q; Fu Y; Xie J
    ACS Appl Mater Interfaces; 2021 Oct; 13(39):47043-47051. PubMed ID: 34546706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preoxidation for colorimetric sensor array detection of VOCs.
    Lin H; Jang M; Suslick KS
    J Am Chem Soc; 2011 Oct; 133(42):16786-9. PubMed ID: 21967478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.