BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36280047)

  • 1. Resection of Scar Tissue in Rats With Spinal Cord Injury Can Promote the Expression of βⅢ-tubulin in the Injured Area.
    Liu B; Liu G; Li C; Liu S; Sun D
    World Neurosurg; 2023 Feb; 170():e115-e126. PubMed ID: 36280047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glial scar and neuroregeneration: histological, functional, and magnetic resonance imaging analysis in chronic spinal cord injury.
    Hu R; Zhou J; Luo C; Lin J; Wang X; Li X; Bian X; Li Y; Wan Q; Yu Y; Feng H
    J Neurosurg Spine; 2010 Aug; 13(2):169-80. PubMed ID: 20672952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury.
    Wang N; Xiao Z; Zhao Y; Wang B; Li X; Li J; Dai J
    J Tissue Eng Regen Med; 2018 Feb; 12(2):e1154-e1163. PubMed ID: 28482124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of chondroitinase ABC on axonal myelination and glial scar after spinal cord injury in rats].
    Zhang T; Shen Y; Lu L; Fan Z; Huo W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Feb; 27(2):145-50. PubMed ID: 23596678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Promotion of transplanted collagen scaffolds combined with brain-derived neurotrophic factor for axonal regeneration and motor function recovery in rats after transected spinal cord injury].
    Chen X; Fan Y; Xiao Z; Li X; Yang B; Zhao Y; Hou X; Han S; Dai J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Jun; 32(6):650-659. PubMed ID: 29905040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of motor function after traumatic spinal cord injury by using plasma-synthesized polypyrrole/iodine application in combination with a mixed rehabilitation scheme.
    Sánchez-Torres S; Díaz-Ruíz A; Ríos C; Olayo MG; Cruz GJ; Olayo R; Morales J; Mondragón-Lozano R; Fabela-Sánchez O; Orozco-Barrios C; Coyoy-Salgado A; Orozco-Suárez S; González-Ruiz C; Álvarez-Mejía L; Morales-Guadarrama A; Buzoianu-Anguiano V; Damián-Matsumura P; Salgado-Ceballos H
    J Mater Sci Mater Med; 2020 Jun; 31(7):58. PubMed ID: 32607849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SU16f inhibits fibrotic scar formation and facilitates axon regeneration and locomotor function recovery after spinal cord injury by blocking the PDGFRβ pathway.
    Li Z; Yu S; Liu Y; Hu X; Li Y; Xiao Z; Chen Y; Tian D; Xu X; Cheng L; Zheng M; Jing J
    J Neuroinflammation; 2022 Apr; 19(1):95. PubMed ID: 35429978
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted Inhibition of Leucine-Rich Repeat and Immunoglobulin Domain-Containing Protein 1 in Transplanted Neural Stem Cells Promotes Neuronal Differentiation and Functional Recovery in Rats Subjected to Spinal Cord Injury.
    Chen N; Cen JS; Wang J; Qin G; Long L; Wang L; Wei F; Xiang Q; Deng DY; Wan Y
    Crit Care Med; 2016 Mar; 44(3):e146-57. PubMed ID: 26491860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on glial scar formation after spinal cord injury in rats.
    Chung J; Kim MH; Yoon YJ; Kim KH; Park SR; Choi BH
    J Neurosurg Spine; 2014 Dec; 21(6):966-73. PubMed ID: 25279652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resection of glial scar following spinal cord injury.
    Rasouli A; Bhatia N; Dinh P; Cahill K; Suryadevara S; Gupta R
    J Orthop Res; 2009 Jul; 27(7):931-6. PubMed ID: 19062171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodynamic Therapy Mediated by Upconversion Nanoparticles to Reduce Glial Scar Formation and Promote Hindlimb Functional Recovery After Spinal Cord Injury in Rats.
    Liu Y; Ban DX; Ma C; Zhang ZG; Zhang JY; Gao SJ; Feng SQ
    J Biomed Nanotechnol; 2016 Nov; 12(11):2063-75. PubMed ID: 29364623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transplantation of preconditioned Schwann cells following hemisection spinal cord injury.
    Dinh P; Bhatia N; Rasouli A; Suryadevara S; Cahill K; Gupta R
    Spine (Phila Pa 1976); 2007 Apr; 32(9):943-9. PubMed ID: 17450067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Angiogenic microspheres promote neural regeneration and motor function recovery after spinal cord injury in rats.
    Yu S; Yao S; Wen Y; Wang Y; Wang H; Xu Q
    Sci Rep; 2016 Sep; 6():33428. PubMed ID: 27641997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transplantation of activated olfactory ensheathing cells by curcumin strengthens regeneration and recovery of function after spinal cord injury in rats.
    Guo J; Cao G; Yang G; Zhang Y; Wang Y; Song W; Xu Y; Ma T; Liu R; Zhang Q; Hao D; Yang H
    Cytotherapy; 2020 Jun; 22(6):301-312. PubMed ID: 32279988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of subacute and chronic scar tissues after complete spinal cord transection.
    Li X; Yang B; Xiao Z; Zhao Y; Han S; Yin Y; Chen B; Dai J
    Exp Neurol; 2018 Aug; 306():132-137. PubMed ID: 29753649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect and mechanism of glycyrrhizin on glial scar formation after spinal cord injury in rats].
    He Y; Sun L; Feng H; Li J; Zhang N; Wang Z
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2020 Oct; 34(10):1298-1304. PubMed ID: 33063497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplantation of preconditioned schwann cells in peripheral nerve grafts after contusion in the adult spinal cord. Improvement of recovery in a rat model.
    Rasouli A; Bhatia N; Suryadevara S; Cahill K; Gupta R
    J Bone Joint Surg Am; 2006 Nov; 88(11):2400-10. PubMed ID: 17079397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroectodermal Stem Cells Grafted into the Injured Spinal Cord Induce Both Axonal Regeneration and Morphological Restoration via Multiple Mechanisms.
    Pajer K; Bellák T; Redl H; Nógrádi A
    J Neurotrauma; 2019 Nov; 36(21):2977-2990. PubMed ID: 31111776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The TGFβ1/SMADs/Snail1 signaling axis mediates pericyte-derived fibrous scar formation after spinal cord injury.
    Huang Y; Liu R; Meng T; Zhang B; Ma J; Liu X
    Int Immunopharmacol; 2024 Feb; 128():111482. PubMed ID: 38237223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.