These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36280494)

  • 1. Digest it all: the lysosomal turnover of cytoplasmic aggregates.
    Mauthe M; Kampinga HH; Hipp MS; Reggiori F
    Trends Biochem Sci; 2023 Mar; 48(3):216-228. PubMed ID: 36280494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p62-mediated phase separation at the intersection of the ubiquitin-proteasome system and autophagy.
    Danieli A; Martens S
    J Cell Sci; 2018 Oct; 131(19):. PubMed ID: 30287680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Insights into Aggrephagy: Their Cellular Functions in the Context of Neurodegenerative Diseases.
    Cóppola-Segovia V; Reggiori F
    J Mol Biol; 2024 Aug; 436(15):168493. PubMed ID: 38360089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase Separation in Regulation of Aggrephagy.
    Sun D; Wu R; Li P; Yu L
    J Mol Biol; 2020 Jan; 432(1):160-169. PubMed ID: 31260696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UXT chaperone prevents proteotoxicity by acting as an autophagy adaptor for p62-dependent aggrephagy.
    Yoon MJ; Choi B; Kim EJ; Ohk J; Yang C; Choi YG; Lee J; Kang C; Song HK; Kim YK; Woo JS; Cho Y; Choi EJ; Jung H; Kim C
    Nat Commun; 2021 Mar; 12(1):1955. PubMed ID: 33782410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CCT2 is an aggrephagy receptor for clearance of solid protein aggregates.
    Ma X; Lu C; Chen Y; Li S; Ma N; Tao X; Li Y; Wang J; Zhou M; Yan YB; Li P; Heydari K; Deng H; Zhang M; Yi C; Ge L
    Cell; 2022 Apr; 185(8):1325-1345.e22. PubMed ID: 35366418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Fluorescence-Microscopic System for Monitoring the Turnover of the Autophagic Substrate p62/SQSTM1.
    Jin H; Wu Q; Kroemer G; Kepp O
    Methods Mol Biol; 2022; 2543():71-82. PubMed ID: 36087260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of selective autophagy: the p62/SQSTM1 paradigm.
    Lamark T; Svenning S; Johansen T
    Essays Biochem; 2017 Dec; 61(6):609-624. PubMed ID: 29233872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TRIM16 governs the biogenesis and disposal of stress-induced protein aggregates to evade cytotoxicity: implication for neurodegeneration and cancer.
    Jena KK; Mehto S; Kolapalli SP; Nath P; Sahu R; Chauhan NR; Sahoo PK; Dhar K; Das SK; Chauhan S; Chauhan S
    Autophagy; 2019 May; 15(5):924-926. PubMed ID: 30806139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TECPR1 promotes aggrephagy by direct recruitment of LC3C autophagosomes to lysosomes.
    Wetzel L; Blanchard S; Rama S; Beier V; Kaufmann A; Wollert T
    Nat Commun; 2020 Jun; 11(1):2993. PubMed ID: 32532970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy.
    Park S; Han S; Choi I; Kim B; Park SP; Joe EH; Suh YH
    PLoS One; 2016; 11(9):e0163029. PubMed ID: 27631370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration.
    Rusmini P; Cortese K; Crippa V; Cristofani R; Cicardi ME; Ferrari V; Vezzoli G; Tedesco B; Meroni M; Messi E; Piccolella M; Galbiati M; Garrè M; Morelli E; Vaccari T; Poletti A
    Autophagy; 2019 Apr; 15(4):631-651. PubMed ID: 30335591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p62 and NBR1 functions are dispensable for aggrephagy in mouse ESCs and ESC-derived neurons.
    Trapannone R; Romanov J; Martens S
    Life Sci Alliance; 2023 Nov; 6(11):. PubMed ID: 37620146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death.
    Bjørkøy G; Lamark T; Brech A; Outzen H; Perander M; Overvatn A; Stenmark H; Johansen T
    J Cell Biol; 2005 Nov; 171(4):603-14. PubMed ID: 16286508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregation diseases.
    Hyttinen JM; Amadio M; Viiri J; Pascale A; Salminen A; Kaarniranta K
    Ageing Res Rev; 2014 Nov; 18():16-28. PubMed ID: 25062811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tau fibrils evade autophagy by excessive p62 coating and TAX1BP1 exclusion.
    Ferrari L; Bauer B; Qiu Y; Schuschnig M; Klotz S; Anrather D; Juretschke T; Beli P; Gelpi E; Martens S
    Sci Adv; 2024 Jun; 10(24):eadm8449. PubMed ID: 38865459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurodegenerative diseases: model organisms, pathology and autophagy.
    Suresh SN; Verma V; Sateesh S; Clement JP; Manjithaya R
    J Genet; 2018 Jul; 97(3):679-701. PubMed ID: 30027903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective Autophagy by Close Encounters of the Ubiquitin Kind.
    Vainshtein A; Grumati P
    Cells; 2020 Oct; 9(11):. PubMed ID: 33114389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of ubiquitinated protein autophagy is compensated by persistent cnc/NFE2L2/Nrf2 antioxidant responses.
    Bhattacharjee A; Ürmösi A; Jipa A; Kovács L; Deák P; Szabó Á; Juhász G
    Autophagy; 2022 Oct; 18(10):2385-2396. PubMed ID: 35184662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy.
    Fan W; Tang Z; Chen D; Moughon D; Ding X; Chen S; Zhu M; Zhong Q
    Autophagy; 2010 Jul; 6(5):614-21. PubMed ID: 20495340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.