BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36280608)

  • 1. Antifungal and antibiofilm activities of bee venom loaded on chitosan nanoparticles: a novel approach for combating fungal human pathogens.
    El-Didamony SE; Kalaba MH; El-Fakharany EM; Sultan MH; Sharaf MH
    World J Microbiol Biotechnol; 2022 Oct; 38(12):244. PubMed ID: 36280608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antifungal and Antibiofilm Efficacy of Paeonol Treatment Against Biofilms Comprising
    Qian W; Li X; Liu Q; Lu J; Wang T; Zhang Q
    Front Cell Infect Microbiol; 2022; 12():884793. PubMed ID: 35669114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of bee venom loaded chitosan nanoparticles for anti-MERS-COV and multi-drug resistance bacteria.
    Elnosary ME; Aboelmagd HA; Habaka MA; Salem SR; El-Naggar ME
    Int J Biol Macromol; 2023 Jan; 224():871-880. PubMed ID: 36283561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial Peptide Octominin-Encapsulated Chitosan Nanoparticles Enhanced Antifungal and Antibacterial Activities.
    Jayathilaka EHTT; Nikapitiya C; De Zoysa M; Whang I
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans.
    Lee SB
    J Pharmacopuncture; 2016 Mar; 19(1):45-50. PubMed ID: 27280049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bee chitosan nanoparticles loaded with apitoxin as a novel approach to eradication of common human bacterial, fungal pathogens and treating cancer.
    Sharaf M; Zahra AA; Alharbi M; Mekky AE; Shehata AM; Alkhudhayri A; Ali AM; Al Suhaimi EA; Zakai SA; Al Harthi N; Liu CG
    Front Microbiol; 2024; 15():1345478. PubMed ID: 38559346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bee venom as an alternative for antibiotics against Staphylococcus aureus infections.
    Sameh A; Gouda AA; Elmligy E; Hatem H; Sadek SS; Ahmed O; El Amir A
    Sci Rep; 2023 Apr; 13(1):6436. PubMed ID: 37081055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Honey Bee Venom (Apis mellifera) Contains Anticoagulation Factors and Increases the Blood-clotting Time.
    Zolfagharian H; Mohajeri M; Babaie M
    J Pharmacopuncture; 2015 Dec; 18(4):7-11. PubMed ID: 26998384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy of ferulic acid encapsulated chitosan nanoparticles against Candida albicans biofilm.
    Panwar R; Pemmaraju SC; Sharma AK; Pruthi V
    Microb Pathog; 2016 Jun; 95():21-31. PubMed ID: 26930164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro antifungal and antibiofilm activities of halogenated quinoline analogues against Candida albicans and Cryptococcus neoformans.
    Zuo R; Garrison AT; Basak A; Zhang P; Huigens RW; Ding Y
    Int J Antimicrob Agents; 2016 Aug; 48(2):208-11. PubMed ID: 27256584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the antibiofilm effects on
    Akkoyunlu A; Dülger G
    Biofouling; 2024; 40(3-4):235-244. PubMed ID: 38584359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anti-microbial and anti-biofilm activities of combined chelerythrine-sanguinarine and mode of action against Candida albicans and Cryptococcus neoformans in vitro.
    Qian W; Yang M; Li X; Sun Z; Li Y; Wang X; Wang T
    Colloids Surf B Biointerfaces; 2020 Jul; 191():111003. PubMed ID: 32276211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbiological investigation study for Apis mellifera yemenitica and Apis mellifera carnica bee venoms on selected bacterial strains.
    Alajmi RA; Barakat IAH; Alfozan L; Mahmoud A; Layqah L; Yehia HM; Metwally DM
    Braz J Microbiol; 2022 Jun; 53(2):709-714. PubMed ID: 35239153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Composition and Antimicrobial Properties of Honey Bee Venom.
    Isidorov V; Zalewski A; Zambrowski G; Swiecicka I
    Molecules; 2023 May; 28(10):. PubMed ID: 37241876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the Biofilm Inhibition Potential of a Novel Phytic Acid-Crosslinked Chitosan Nanoparticle: In Vitro and In Vivo Investigations.
    Nayak R; Rai VK; Pradhan D; Halder J; Rajwar TK; Dash P; Das C; Mishra A; Mahanty R; Saha I; Manoharadas S; Kar B; Ghosh G; Rath G
    AAPS PharmSciTech; 2024 May; 25(5):106. PubMed ID: 38724834
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    K Bakhiet E; A M Hussien H; Elshehaby M
    Pak J Biol Sci; 2022 Sep; 25(10):875-884. PubMed ID: 36404740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifungal Effects of
    Moghim H; Taghipour S; Kheiri S; Khabbazi H; Baradaran A
    Int J Prev Med; 2021; 12():163. PubMed ID: 35070196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan nanoparticles encapsulating farnesol evaluated in vivo against Candida albicans.
    Costa AF; da Silva JT; Martins JA; Rocha VL; de Menezes LB; Amaral AC
    Braz J Microbiol; 2024 Mar; 55(1):143-154. PubMed ID: 37964169
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antifungal Activity of Chitosan-Coated Poly(lactic-co-glycolic) Acid Nanoparticles Containing Amphotericin B.
    Ludwig DB; de Camargo LEA; Khalil NM; Auler ME; Mainardes RM
    Mycopathologia; 2018 Aug; 183(4):659-668. PubMed ID: 29497926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibitory activities of phloroglucinol-chitosan nanoparticles on mono- and dual-species biofilms of Candida albicans and bacteria.
    Khan F; Oh D; Chandika P; Jo DM; Bamunarachchi NI; Jung WK; Kim YM
    Colloids Surf B Biointerfaces; 2022 Mar; 211():112307. PubMed ID: 34971906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.