BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36280721)

  • 1. A multi-purpose, regenerable, proteome-scale, human phosphoserine resource for phosphoproteomics.
    Gassaway BM; Li J; Rad R; Mintseris J; Mohler K; Levy T; Aguiar M; Beausoleil SA; Paulo JA; Rinehart J; Huttlin EL; Gygi SP
    Nat Methods; 2022 Nov; 19(11):1371-1375. PubMed ID: 36280721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. LuciPHOr: algorithm for phosphorylation site localization with false localization rate estimation using modified target-decoy approach.
    Fermin D; Walmsley SJ; Gingras AC; Choi H; Nesvizhskii AI
    Mol Cell Proteomics; 2013 Nov; 12(11):3409-19. PubMed ID: 23918812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confident phosphorylation site localization using the Mascot Delta Score.
    Savitski MM; Lemeer S; Boesche M; Lang M; Mathieson T; Bantscheff M; Kuster B
    Mol Cell Proteomics; 2011 Feb; 10(2):M110.003830. PubMed ID: 21057138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights from the First Phosphopeptide Challenge of the MS Resource Pillar of the HUPO Human Proteome Project.
    Hoopmann MR; Kusebauch U; Palmblad M; Bandeira N; Shteynberg DD; He L; Xia B; Stoychev SH; Omenn GS; Weintraub ST; Moritz RL
    J Proteome Res; 2020 Dec; 19(12):4754-4765. PubMed ID: 33166149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepFLR facilitates false localization rate control in phosphoproteomics.
    Zong Y; Wang Y; Yang Y; Zhao D; Wang X; Shen C; Qiao L
    Nat Commun; 2023 Apr; 14(1):2269. PubMed ID: 37080984
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A scoring model for phosphopeptide site localization and its impact on the question of whether to use MSA.
    Fischer JSDG; Dos Santos MDM; Marchini FK; Barbosa VC; Carvalho PC; Zanchin NIT
    J Proteomics; 2015 Nov; 129():42-50. PubMed ID: 25623781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Occurrence and detection of phosphopeptide isomers in large-scale phosphoproteomics experiments.
    Courcelles M; Bridon G; Lemieux S; Thibault P
    J Proteome Res; 2012 Jul; 11(7):3753-65. PubMed ID: 22668510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing 22 Popular Phosphoproteomics Pipelines for Peptide Identification and Site Localization.
    Locard-Paulet M; Bouyssié D; Froment C; Burlet-Schiltz O; Jensen LJ
    J Proteome Res; 2020 Mar; 19(3):1338-1345. PubMed ID: 31975593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of alternative MS/MS and bioinformatics approaches for confident phosphorylation site localization.
    Wiese H; Kuhlmann K; Wiese S; Stoepel NS; Pawlas M; Meyer HE; Stephan C; Eisenacher M; Drepper F; Warscheid B
    J Proteome Res; 2014 Feb; 13(2):1128-37. PubMed ID: 24364495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Confident site localization using a simulated phosphopeptide spectral library.
    Suni V; Imanishi SY; Maiolica A; Aebersold R; Corthals GL
    J Proteome Res; 2015 May; 14(5):2348-59. PubMed ID: 25774671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiplexed quantitative phosphoproteomics of cell line and tissue samples.
    Kreuzer J; Edwards A; Haas W
    Methods Enzymol; 2019; 626():41-65. PubMed ID: 31606085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic analysis of phosphorylation in cancer.
    Ruprecht B; Lemeer S
    Expert Rev Proteomics; 2014 Jun; 11(3):259-67. PubMed ID: 24666026
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass spectrometry-driven phosphoproteomics: patterning the systems biology mosaic.
    Jünger MA; Aebersold R
    Wiley Interdiscip Rev Dev Biol; 2014; 3(1):83-112. PubMed ID: 24902836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphopeptide enrichment using offline titanium dioxide columns for phosphoproteomics.
    Yu LR; Veenstra T
    Methods Mol Biol; 2013; 1002():93-103. PubMed ID: 23625397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative phosphoproteomics reveals evolutionary and functional conservation of phosphorylation across eukaryotes.
    Boekhorst J; van Breukelen B; Heck A; Snel B
    Genome Biol; 2008 Oct; 9(10):R144. PubMed ID: 18828897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A data-independent acquisition-based global phosphoproteomics system enables deep profiling.
    Kitata RB; Choong WK; Tsai CF; Lin PY; Chen BS; Chang YC; Nesvizhskii AI; Sung TY; Chen YJ
    Nat Commun; 2021 May; 12(1):2539. PubMed ID: 33953186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Confident and sensitive phosphoproteomics using combinations of collision induced dissociation and electron transfer dissociation.
    Collins MO; Wright JC; Jones M; Rayner JC; Choudhary JS
    J Proteomics; 2014 May; 103(100):1-14. PubMed ID: 24657495
    [TBL] [Abstract][Full Text] [Related]  

  • 18. WIDENING THE BOTTLENECK OF PHOSPHOPROTEOMICS: EVOLVING STRATEGIES FOR PHOSPHOPEPTIDE ENRICHMENT.
    Low TY; Mohtar MA; Lee PY; Omar N; Zhou H; Ye M
    Mass Spectrom Rev; 2021 Jul; 40(4):309-333. PubMed ID: 32491218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and reproducible phosphopeptide enrichment by tandem metal oxide affinity chromatography: application to boron deficiency induced phosphoproteomics.
    Chen Y; Hoehenwarter W
    Plant J; 2019 Apr; 98(2):370-384. PubMed ID: 30589143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated chemical, mass spectrometric and computational strategy for (quantitative) phosphoproteomics: application to Drosophila melanogaster Kc167 cells.
    Bodenmiller B; Mueller LN; Pedrioli PG; Pflieger D; Jünger MA; Eng JK; Aebersold R; Tao WA
    Mol Biosyst; 2007 Apr; 3(4):275-86. PubMed ID: 17372656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.