These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 36280902)
1. A Photoresponsive Battery Based on a Redox-Coupled Covalent-Organic-Framework Hybrid Photoelectrochemical Cathode. Wang W; Zhang X; Lin J; Zhu L; Zhou E; Feng Y; Yuan D; Wang Y Angew Chem Int Ed Engl; 2022 Dec; 61(50):e202214816. PubMed ID: 36280902 [TBL] [Abstract][Full Text] [Related]
2. Coupled Solar Battery with 6.9 % Efficiency. Jiao L; Zhang X; Feng Y; Lin J; Yuan D; Wang Y Angew Chem Int Ed Engl; 2023 Jul; 62(30):e202306506. PubMed ID: 37254704 [TBL] [Abstract][Full Text] [Related]
3. Molecular Photoelectrochemical Energy Storage Materials for Coupled Solar Batteries. Zhang X; Jiao L; Wang Y Acc Chem Res; 2024 Jun; 57(12):1736-1746. PubMed ID: 38836507 [TBL] [Abstract][Full Text] [Related]
4. An organic-halide perovskite-based photo-assisted Li-ion battery for photoelectrochemical storage. Chen Y; Chen Z; Zhang X; Chen J; Wang Y Nanoscale; 2022 Aug; 14(30):10903-10909. PubMed ID: 35852151 [TBL] [Abstract][Full Text] [Related]
5. Integrated Photoelectrochemical Solar Energy Conversion and Organic Redox Flow Battery Devices. Li W; Fu HC; Li L; Cabán-Acevedo M; He JH; Jin S Angew Chem Int Ed Engl; 2016 Oct; 55(42):13104-13108. PubMed ID: 27654317 [TBL] [Abstract][Full Text] [Related]
6. Direct Solar-to-Electrochemical Energy Storage in a Functionalized Covalent Organic Framework. Lv J; Tan YX; Xie J; Yang R; Yu M; Sun S; Li MD; Yuan D; Wang Y Angew Chem Int Ed Engl; 2018 Sep; 57(39):12716-12720. PubMed ID: 30094899 [TBL] [Abstract][Full Text] [Related]
7. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
8. An Anti-Aromatic Covalent Organic Framework Cathode with Dual-Redox Centers for Rechargeable Aqueous Zinc Batteries. Lin Z; Lin L; Zhu J; Wu W; Yang X; Sun X ACS Appl Mater Interfaces; 2022 Aug; 14(34):38689-38695. PubMed ID: 35975747 [TBL] [Abstract][Full Text] [Related]
9. Thiazolo[5,4-d]thiazole-Based Donor-Acceptor Covalent Organic Framework for Sunlight-Driven Hydrogen Evolution. Li W; Huang X; Zeng T; Liu YA; Hu W; Yang H; Zhang YB; Wen K Angew Chem Int Ed Engl; 2021 Jan; 60(4):1869-1874. PubMed ID: 33285029 [TBL] [Abstract][Full Text] [Related]
10. In Situ Encapsulating Metal Oxides into Core-Shell Hierarchical Hybrid Fibers for Flexible Zinc-Ion Batteries toward High Durability and Ultrafast Capability for Wearable Applications. Wang H; Zhang S; Deng C ACS Appl Mater Interfaces; 2019 Oct; 11(39):35796-35808. PubMed ID: 31490643 [TBL] [Abstract][Full Text] [Related]
12. Orthoquinone-Based Covalent Organic Frameworks with Ordered Channel Structures for Ultrahigh Performance Aqueous Zinc-Organic Batteries. Zheng S; Shi D; Yan D; Wang Q; Sun T; Ma T; Li L; He D; Tao Z; Chen J Angew Chem Int Ed Engl; 2022 Mar; 61(12):e202117511. PubMed ID: 35064728 [TBL] [Abstract][Full Text] [Related]
13. In Situ Growth of Covalent Organic Framework Nanosheets on Graphene as the Cathode for Long-Life High-Capacity Lithium-Ion Batteries. Liu X; Jin Y; Wang H; Yang X; Zhang P; Wang K; Jiang J Adv Mater; 2022 Sep; 34(37):e2203605. PubMed ID: 35905464 [TBL] [Abstract][Full Text] [Related]
14. Anionic Co-insertion Charge Storage in Dinitrobenzene Cathodes for High-Performance Aqueous Zinc-Organic Batteries. Song Z; Miao L; Duan H; Ruhlmann L; Lv Y; Zhu D; Li L; Gan L; Liu M Angew Chem Int Ed Engl; 2022 Aug; 61(35):e202208821. PubMed ID: 35781762 [TBL] [Abstract][Full Text] [Related]
15. Combination of lightweight elements and nanostructured materials for batteries. Chen J; Cheng F Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236 [TBL] [Abstract][Full Text] [Related]
16. Naphthoquinone-Based Composite Cathodes for Aqueous Rechargeable Zinc-Ion Batteries. Kumankuma-Sarpong J; Tang S; Guo W; Fu Y ACS Appl Mater Interfaces; 2021 Jan; 13(3):4084-4092. PubMed ID: 33459008 [TBL] [Abstract][Full Text] [Related]
17. Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry. Lei Z; Yang Q; Xu Y; Guo S; Sun W; Liu H; Lv LP; Zhang Y; Wang Y Nat Commun; 2018 Feb; 9(1):576. PubMed ID: 29422540 [TBL] [Abstract][Full Text] [Related]
18. A Truxenone-based Covalent Organic Framework as an All-Solid-State Lithium-Ion Battery Cathode with High Capacity. Yang X; Hu Y; Dunlap N; Wang X; Huang S; Su Z; Sharma S; Jin Y; Huang F; Wang X; Lee SH; Zhang W Angew Chem Int Ed Engl; 2020 Nov; 59(46):20385-20389. PubMed ID: 32722860 [TBL] [Abstract][Full Text] [Related]
19. A 3.5 V lithium-iodine hybrid redox battery with vertically aligned carbon nanotube current collector. Zhao Y; Hong M; Bonnet Mercier N; Yu G; Choi HC; Byon HR Nano Lett; 2014 Feb; 14(2):1085-92. PubMed ID: 24475968 [TBL] [Abstract][Full Text] [Related]
20. Two-Dimensional Covalent Organic Frameworks with Enhanced Aluminum Storage Properties. Lu H; Ning F; Jin R; Teng C; Wang Y; Xi K; Zhou D; Xue G ChemSusChem; 2020 Jul; 13(13):3447-3454. PubMed ID: 32368825 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]