These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36281332)

  • 21. Efficient Single-Photon Coupling from a Nitrogen-Vacancy Center Embedded in a Diamond Nanowire Utilizing an Optical Nanofiber.
    Yonezu Y; Wakui K; Furusawa K; Takeoka M; Semba K; Aoki T
    Sci Rep; 2017 Oct; 7(1):12985. PubMed ID: 29021540
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bright nanowire single photon source based on SiV centers in diamond.
    Marseglia L; Saha K; Ajoy A; Schröder T; Englund D; Jelezko F; Walsworth R; Pacheco JL; Perry DL; Bielejec ES; Cappellaro P
    Opt Express; 2018 Jan; 26(1):80-89. PubMed ID: 29328295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phonon Networks with Silicon-Vacancy Centers in Diamond Waveguides.
    Lemonde MA; Meesala S; Sipahigil A; Schuetz MJA; Lukin MD; Loncar M; Rabl P
    Phys Rev Lett; 2018 May; 120(21):213603. PubMed ID: 29883171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resonance Fluorescence from Waveguide-Coupled, Strain-Localized, Two-Dimensional Quantum Emitters.
    Errando-Herranz C; Schöll E; Picard R; Laini M; Gyger S; Elshaari AW; Branny A; Wennberg U; Barbat S; Renaud T; Sartison M; Brotons-Gisbert M; Bonato C; Gerardot BD; Zwiller V; Jöns KD
    ACS Photonics; 2021 Apr; 8(4):1069-1076. PubMed ID: 34056034
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional quantum photonic elements based on single nitrogen vacancy-centres in laser-written microstructures.
    Schell AW; Kaschke J; Fischer J; Henze R; Wolters J; Wegener M; Benson O
    Sci Rep; 2013; 3():1577. PubMed ID: 23546514
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Quantum Photonic Circuits Integrated with Color Centers in Designer Nanodiamonds.
    Ngan K; Zhan Y; Dory C; Vučković J; Sun S
    Nano Lett; 2023 Oct; 23(20):9360-9366. PubMed ID: 37782048
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Waveguide-coupled single collective excitation of atomic arrays.
    Corzo NV; Raskop J; Chandra A; Sheremet AS; Gouraud B; Laurat J
    Nature; 2019 Feb; 566(7744):359-362. PubMed ID: 30718773
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fiber-integrated diamond-based single photon source.
    Schröder T; Schell AW; Kewes G; Aichele T; Benson O
    Nano Lett; 2011 Jan; 11(1):198-202. PubMed ID: 21138271
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tapering of femtosecond laser-written waveguides.
    Heilmann R; Greganti C; Gräfe M; Nolte S; Walther P; Szameit A
    Appl Opt; 2018 Jan; 57(3):377-381. PubMed ID: 29400784
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Laser Writing of Scalable Single Color Centers in Silicon Carbide.
    Chen YC; Salter PS; Niethammer M; Widmann M; Kaiser F; Nagy R; Morioka N; Babin C; Erlekampf J; Berwian P; Booth MJ; Wrachtrup J
    Nano Lett; 2019 Apr; 19(4):2377-2383. PubMed ID: 30882227
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-resolution magnetic field imaging with a nitrogen-vacancy diamond sensor integrated with a photonic-crystal fiber.
    Fedotov IV; Blakley SM; Serebryannikov EE; Hemmer P; Scully MO; Zheltikov AM
    Opt Lett; 2016 Feb; 41(3):472-5. PubMed ID: 26907400
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photonic crystal cavity-enhanced emission from silicon vacancy centers in polycrystalline diamond achieved without postfabrication fine-tuning.
    Ondič L; Varga M; Fait J; Hruška K; Jurka V; Kromka A; Maňák J; Kapusta P; Nováková J
    Nanoscale; 2020 Jun; 12(24):13055-13063. PubMed ID: 32539056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancement of the evanescent field using polymer waveguides fabricated by deep UV exposure on mesoporous silicon.
    Rabus DG; DeLouise LA; Ichihashi Y
    Opt Lett; 2007 Oct; 32(19):2843-5. PubMed ID: 17909592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoelectromechanical Control of Spin-Photon Interfaces in a Hybrid Quantum System on Chip.
    Clark G; Raniwala H; Koppa M; Chen K; Leenheer A; Zimmermann M; Dong M; Li L; Wen YH; Dominguez D; Trusheim M; Gilbert G; Eichenfield M; Englund D
    Nano Lett; 2024 Jan; 24(4):1316-1323. PubMed ID: 38227973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Large-scale controlled coupling of single-photon emitters to high-index dielectric nanoantennas by AFM nanoxerography.
    Humbert M; Hernandez R; Mallet N; Larrieu G; Larrey V; Fournel F; Guérin F; Palleau E; Paillard V; Cuche A; Ressier L
    Nanoscale; 2023 Jan; 15(2):599-608. PubMed ID: 36485024
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-birefringence direct UV-written waveguides for use as heralded single-photon sources at telecommunication wavelengths.
    Posner MT; Hiemstra T; Mennea PL; Bannerman RHS; Hoff UB; Eckstein A; Steven Kolthammer W; Walmsley IA; Smith DH; Gates JC; Smith PGR
    Opt Express; 2018 Sep; 26(19):24678-24686. PubMed ID: 30469580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tapered self-written waveguide for a silicon photonic chip I/O.
    Saito Y; Shikama K; Tsuchizawa T; Sato N
    Opt Lett; 2022 Jun; 47(12):2971-2974. PubMed ID: 35709028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deterministic photon-emitter coupling in chiral photonic circuits.
    Söllner I; Mahmoodian S; Hansen SL; Midolo L; Javadi A; Kiršanskė G; Pregnolato T; El-Ella H; Lee EH; Song JD; Stobbe S; Lodahl P
    Nat Nanotechnol; 2015 Sep; 10(9):775-8. PubMed ID: 26214251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultra-large nonlinear parameter in graphene-silicon waveguide structures.
    Donnelly C; Tan DT
    Opt Express; 2014 Sep; 22(19):22820-30. PubMed ID: 25321752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. III-V quantum light source and cavity-QED on silicon.
    Luxmoore IJ; Toro R; Del Pozo-Zamudio O; Wasley NA; Chekhovich EA; Sanchez AM; Beanland R; Fox AM; Skolnick MS; Liu HY; Tartakovskii AI
    Sci Rep; 2013; 3():1239. PubMed ID: 23393621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.