These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36281407)

  • 1. Surface tension effects on flow dynamics and alveolar mechanics in the acinar region of human lung.
    Francis I; Saha SC
    Heliyon; 2022 Oct; 8(10):e11026. PubMed ID: 36281407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Airflow and Particle Deposition in a Human Acinar Region.
    Kolanjiyil AV; Kleinstreuer C
    Comput Math Methods Med; 2019; 2019():5952941. PubMed ID: 30755779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Airflow and Particle Deposition in Acinar Models with Interalveolar Septal Walls and Different Alveolar Numbers.
    Xi J; Talaat M; Tanbour H; Talaat K
    Comput Math Methods Med; 2018; 2018():3649391. PubMed ID: 30356402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flow field analysis in expanding healthy and emphysematous alveolar models using particle image velocimetry.
    Oakes JM; Day S; Weinstein SJ; Robinson RJ
    J Biomech Eng; 2010 Feb; 132(2):021008. PubMed ID: 20370245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of geometry on airflow in the acinar region of the human lung.
    Kumar H; Tawhai MH; Hoffman EA; Lin CL
    J Biomech; 2009 Aug; 42(11):1635-42. PubMed ID: 19482288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A numerical study of the aerosol behavior in intra-acinar region of a human lung.
    Ciloglu D
    Phys Fluids (1994); 2020 Oct; 32(10):103305. PubMed ID: 33100807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow in a terminal alveolar sac model with expanding walls using computational fluid dynamics.
    Harding EM; Robinson RJ
    Inhal Toxicol; 2010 Jul; 22(8):669-78. PubMed ID: 20462393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid-structure interaction analysis of airflow, structural mechanics and aerosol dynamics in a four-generation acinar model.
    Li P; Guo W; Fan J; Su C; Zhao X; Xu X
    J Aerosol Sci; 2023 Jun; 171():106166. PubMed ID: 36938546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acinus-on-a-chip: a microfluidic platform for pulmonary acinar flows.
    Fishler R; Mulligan MK; Sznitman J
    J Biomech; 2013 Nov; 46(16):2817-23. PubMed ID: 24090494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of Airflow in an Idealized Emphysematous Human Acinus.
    Dutta A; Vasilescu DM; Hogg JC; Phillion AB; Brinkerhoff JR
    J Biomech Eng; 2018 Jul; 140(7):. PubMed ID: 29570757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geometric hysteresis of alveolated ductal architecture.
    Kojic M; Butler JP; Vlastelica I; Stojanovic B; Rankovic V; Tsuda A
    J Biomech Eng; 2011 Nov; 133(11):111005. PubMed ID: 22168737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow field analysis in a compliant acinus replica model using particle image velocimetry (PIV).
    Berg EJ; Weisman JL; Oldham MJ; Robinson RJ
    J Biomech; 2010 Apr; 43(6):1039-47. PubMed ID: 20116064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of alveolar topology on acinar flows and convective mixing.
    Hofemeier P; Sznitman J
    J Biomech Eng; 2014 Jun; 136(6):061007. PubMed ID: 24686842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations.
    Xu X; Wu J; Weng W; Fu M
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1679-1695. PubMed ID: 32026145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow and particle dispersion in a pulmonary alveolus--part I: velocity measurements and convective particle transport.
    Chhabra S; Prasad AK
    J Biomech Eng; 2010 May; 132(5):051009. PubMed ID: 20459210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional convective alveolar flow induced by rhythmic breathing motion of the pulmonary acinus.
    Sznitman J; Heimsch F; Heimsch T; Rusch D; Rösgen T
    J Biomech Eng; 2007 Oct; 129(5):658-65. PubMed ID: 17887891
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of airflow and microparticle deposition in a synchrotron micro-CT-based pulmonary acinus model.
    Sera T; Uesugi K; Yagi N; Yokota H
    Comput Methods Biomech Biomed Engin; 2015; 18(13):1427-35. PubMed ID: 24821393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Respiratory flow phenomena and gravitational deposition in a three-dimensional space-filling model of the pulmonary acinar tree.
    Sznitman J; Heimsch T; Wildhaber JH; Tsuda A; Rösgen T
    J Biomech Eng; 2009 Mar; 131(3):031010. PubMed ID: 19154069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient computational fluid-particle dynamics method to predict deposition in a simplified approximation of the deep lung.
    Koullapis PG; Hofemeier P; Sznitman J; Kassinos SC
    Eur J Pharm Sci; 2018 Feb; 113():132-144. PubMed ID: 28917963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deposition of Particles in the Alveolar Airways: Inhalation and Breath-Hold with Pharmaceutical Aerosols.
    Khajeh-Hosseini-Dalasm N; Longest PW
    J Aerosol Sci; 2015 Jan; 79():15-30. PubMed ID: 25382867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.