These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36281583)

  • 1. Origin of a Double-Band Feature in the Ethylenic C═C Stretching Modes of the Retinal Chromophore in Heliorhodopsins.
    Urui T; Das I; Mizuno M; Sheves M; Mizutani Y
    J Phys Chem B; 2022 Nov; 126(43):8680-8688. PubMed ID: 36281583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonance Raman Investigation of the Chromophore Structure of Heliorhodopsins.
    Otomo A; Mizuno M; Singh M; Shihoya W; Inoue K; Nureki O; Béjà O; Kandori H; Mizutani Y
    J Phys Chem Lett; 2018 Nov; 9(22):6431-6436. PubMed ID: 30351947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman Determination of Chromophore Structures of Heliorhodopsin Photointermediates.
    Urui T; Mizuno M; Otomo A; Kandori H; Mizutani Y
    J Phys Chem B; 2021 Jul; 125(26):7155-7162. PubMed ID: 34167296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cis-Trans Reisomerization Precedes Reprotonation of the Retinal Chromophore in the Photocycle of Schizorhodopsin 4.
    Hayashi K; Mizuno M; Kandori H; Mizutani Y
    Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202203149. PubMed ID: 35749139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial Rhodopsins: The Last Two Decades.
    Rozenberg A; Inoue K; Kandori H; Béjà O
    Annu Rev Microbiol; 2021 Oct; 75():427-447. PubMed ID: 34343014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-temperature Raman spectroscopy reveals small chromophore distortion in primary photointermediate of proteorhodopsin.
    Fujisawa T; Abe M; Tamogami J; Kikukawa T; Kamo N; Unno M
    FEBS Lett; 2018 Sep; 592(18):3054-3061. PubMed ID: 30098005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strongly Hydrogen-Bonded Schiff Base and Adjoining Polyene Twisting in the Retinal Chromophore of Schizorhodopsins.
    Shionoya T; Singh M; Mizuno M; Kandori H; Mizutani Y
    Biochemistry; 2021 Oct; 60(41):3050-3057. PubMed ID: 34601881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman spectroscopy of a near infrared absorbing proteorhodopsin: Similarities to the bacteriorhodopsin O photointermediate.
    Mei G; Mamaeva N; Ganapathy S; Wang P; DeGrip WJ; Rothschild KJ
    PLoS One; 2018; 13(12):e0209506. PubMed ID: 30586409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal chromophore structure and Schiff base interactions in red-shifted channelrhodopsin-1 from Chlamydomonas augustae.
    Ogren JI; Mamaev S; Russano D; Li H; Spudich JL; Rothschild KJ
    Biochemistry; 2014 Jun; 53(24):3961-70. PubMed ID: 24869998
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Steric constraint in the primary photoproduct of an archaeal rhodopsin from regiospecific perturbation of C-D stretching vibration of the retinyl chromophore.
    Sudo Y; Furutani Y; Wada A; Ito M; Kamo N; Kandori H
    J Am Chem Soc; 2005 Nov; 127(46):16036-7. PubMed ID: 16287285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Evolution of a Retinal Chromophore in the Photocycle of Halorhodopsin from Natronobacterium pharaonis.
    Mizuno M; Nakajima A; Kandori H; Mizutani Y
    J Phys Chem A; 2018 Mar; 122(9):2411-2423. PubMed ID: 29460629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FTIR and Raman Spectroscopy of Rhodopsins.
    Kandori H; Mizutani Y
    Methods Mol Biol; 2022; 2501():207-228. PubMed ID: 35857230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excited-state structure and isomerization dynamics of the retinal chromophore in rhodopsin from resonance Raman intensities.
    Loppnow GR; Mathies RA
    Biophys J; 1988 Jul; 54(1):35-43. PubMed ID: 3416032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of heliorhodopsin.
    Shihoya W; Inoue K; Singh M; Konno M; Hososhima S; Yamashita K; Ikeda K; Higuchi A; Izume T; Okazaki S; Hashimoto M; Mizutori R; Tomida S; Yamauchi Y; Abe-Yoshizumi R; Katayama K; Tsunoda SP; Shibata M; Furutani Y; Pushkarev A; Béjà O; Uchihashi T; Kandori H; Nureki O
    Nature; 2019 Oct; 574(7776):132-136. PubMed ID: 31554965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics.
    Pushkarev A; Inoue K; Larom S; Flores-Uribe J; Singh M; Konno M; Tomida S; Ito S; Nakamura R; Tsunoda SP; Philosof A; Sharon I; Yutin N; Koonin EV; Kandori H; Béjà O
    Nature; 2018 Jun; 558(7711):595-599. PubMed ID: 29925949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy.
    Smith SO; Lugtenburg J; Mathies RA
    J Membr Biol; 1985; 85(2):95-109. PubMed ID: 4009698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric-field dependent decays of two spectroscopically different M-states of photosensory rhodopsin II from Natronobacterium pharaonis.
    Rivas L; Hippler-Mreyen S; Engelhard M; Hildebrandt P
    Biophys J; 2003 Jun; 84(6):3864-73. PubMed ID: 12770892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reisomerization of retinal represents a molecular switch mediating Na
    Fujisawa T; Kinoue K; Seike R; Kikukawa T; Unno M
    J Biol Chem; 2022 Sep; 298(9):102366. PubMed ID: 35963435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excitation energy-transfer and the relative orientation of retinal and carotenoid in xanthorhodopsin.
    Balashov SP; Imasheva ES; Wang JM; Lanyi JK
    Biophys J; 2008 Sep; 95(5):2402-14. PubMed ID: 18515390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Raman spectroscopy reveals direct chromophore interactions in the Leu/Gln105 spectral tuning switch of proteorhodopsins.
    Kralj JM; Spudich EN; Spudich JL; Rothschild KJ
    J Phys Chem B; 2008 Sep; 112(37):11770-6. PubMed ID: 18717545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.