These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
28. Efflorescence of ammonium sulfate and coated ammonium sulfate particles: evidence for surface nucleation. Ciobanu VG; Marcolli C; Krieger UK; Zuend A; Peter T J Phys Chem A; 2010 Sep; 114(35):9486-95. PubMed ID: 20712361 [TBL] [Abstract][Full Text] [Related]
29. Quantification of the Ice Nucleation Activity of Ice-Binding Proteins Using a Microliter Droplet Freezing Experiment. Whale TF Methods Mol Biol; 2024; 2730():121-134. PubMed ID: 37943455 [TBL] [Abstract][Full Text] [Related]
30. Does the emulsification procedure influence freezing and thawing of aqueous droplets? Hauptmann A; Handle KF; Baloh P; Grothe H; Loerting T J Chem Phys; 2016 Dec; 145(21):211923. PubMed ID: 28799359 [TBL] [Abstract][Full Text] [Related]
31. Crystallization of aqueous ammonium sulfate particles internally mixed with soot and kaolinite: crystallization relative humidities and nucleation rates. Pant A; Parsons MT; Bertram AK J Phys Chem A; 2006 Jul; 110(28):8701-9. PubMed ID: 16836431 [TBL] [Abstract][Full Text] [Related]
32. The presence of nanoparticles in aqueous droplets containing plant-derived biopolymers plays a role in heterogeneous ice nucleation. Bieber P; Darwish GH; Algar WR; Borduas-Dedekind N J Chem Phys; 2024 Sep; 161(9):. PubMed ID: 39230378 [TBL] [Abstract][Full Text] [Related]
33. Zero-sized effect of nano-particles and inverse homogeneous nucleation. Principles of freezing and antifreeze. Liu XY; Du N J Biol Chem; 2004 Feb; 279(7):6124-31. PubMed ID: 14602714 [TBL] [Abstract][Full Text] [Related]
34. Rate of Homogenous Nucleation of Ice in Supercooled Water. Atkinson JD; Murray BJ; O'Sullivan D J Phys Chem A; 2016 Aug; 120(33):6513-20. PubMed ID: 27410458 [TBL] [Abstract][Full Text] [Related]
35. Kinetic Limitation to Inorganic Ion Diffusivity and to Coalescence of Inorganic Inclusions in Viscous Liquid-Liquid Phase-Separated Particles. Fard MM; Krieger UK; Peter T J Phys Chem A; 2017 Dec; 121(48):9284-9296. PubMed ID: 29111734 [TBL] [Abstract][Full Text] [Related]
36. Dependence of homogeneous crystal nucleation in water droplets on their radii and its implication for modeling the formation of ice particles in cirrus clouds. Djikaev YS; Ruckenstein E Phys Chem Chem Phys; 2017 Aug; 19(30):20075-20081. PubMed ID: 28725886 [TBL] [Abstract][Full Text] [Related]
37. Rates of homogeneous ice nucleation in levitated H2O and D2O droplets. Stöckel P; Weidinger IM; Baumgärtel H; Leisner T J Phys Chem A; 2005 Mar; 109(11):2540-6. PubMed ID: 16833556 [TBL] [Abstract][Full Text] [Related]
38. Ice nucleation forced by transient electric fields. Löwe JM; Hinrichsen V; Schremb M; Tropea C Phys Rev E; 2021 Dec; 104(6-1):064801. PubMed ID: 35030904 [TBL] [Abstract][Full Text] [Related]
39. Nucleation Kinetics in Mixed NaNO3/Glycerol Droplets Investigated with the FTIR-ATR Technique. Ren HM; Cai C; Leng CB; Pang SF; Zhang YH J Phys Chem B; 2016 Mar; 120(11):2913-20. PubMed ID: 26929982 [TBL] [Abstract][Full Text] [Related]
40. The importance of feldspar for ice nucleation by mineral dust in mixed-phase clouds. Atkinson JD; Murray BJ; Woodhouse MT; Whale TF; Baustian KJ; Carslaw KS; Dobbie S; O'Sullivan D; Malkin TL Nature; 2013 Jun; 498(7454):355-8. PubMed ID: 23760484 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]