BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 36282069)

  • 1. 3D printing-enabled uniform temperature distributions in microfluidic devices.
    Sanchez D; Hawkins G; Hinnen HS; Day A; Woolley AT; Nordin GP; Munro T
    Lab Chip; 2022 Nov; 22(22):4393-4408. PubMed ID: 36282069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Custom 3D printer and resin for 18 μm × 20 μm microfluidic flow channels.
    Gong H; Bickham BP; Woolley AT; Nordin GP
    Lab Chip; 2017 Aug; 17(17):2899-2909. PubMed ID: 28726927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices.
    Shafique H; Karamzadeh V; Kim G; Shen ML; Morocz Y; Sohrabi-Kashani A; Juncker D
    Lab Chip; 2024 May; 24(10):2774-2790. PubMed ID: 38682609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging the third dimension in microfluidic devices using 3D printing: no longer just scratching the surface.
    Pradela Filho LA; Paixão TRLC; Nordin GP; Woolley AT
    Anal Bioanal Chem; 2024 Apr; 416(9):2031-2037. PubMed ID: 37470814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of Cancer Cells from Liquid Biopsies Using 3D-Printed Affinity Devices.
    Yang Y; Griffin K; Villareal S; Pappas D
    Methods Mol Biol; 2023; 2679():233-240. PubMed ID: 37300620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile Microfluidics for Biofabrication Platforms Enabled by an Agile and Inexpensive Fabrication Pipeline.
    Moetazedian A; Candeo A; Liu S; Hughes A; Nasrollahi V; Saadat M; Bassi A; Grover LM; Cox LR; Poologasundarampillai G
    Adv Healthc Mater; 2023 Oct; 12(26):e2300636. PubMed ID: 37186512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatially and optically tailored 3D printing for highly miniaturized and integrated microfluidics.
    Sanchez Noriega JL; Chartrand NA; Valdoz JC; Cribbs CG; Jacobs DA; Poulson D; Viglione MS; Woolley AT; Van Ry PM; Christensen KA; Nordin GP
    Nat Commun; 2021 Sep; 12(1):5509. PubMed ID: 34535656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skin-interfaced microfluidic systems with spatially engineered 3D fluidics for sweat capture and analysis.
    Wu CH; Ma HJH; Baessler P; Balanay RK; Ray TR
    Sci Adv; 2023 May; 9(18):eadg4272. PubMed ID: 37134158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural colour enhanced microfluidics.
    Qin D; Gibbons AH; Ito MM; Parimalam SS; Jiang H; Enis Karahan H; Ghalei B; Yamaguchi D; Pandian GN; Sivaniah E
    Nat Commun; 2022 May; 13(1):2281. PubMed ID: 35589687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated biocompatible 3D printed isoporous membranes with 7 μm pores.
    Viglione MS; Saxton A; Downs D; Woolley AT; Christensen KA; Van Ry PM; Nordin GP
    Lab Chip; 2024 Apr; 24(8):2202-2207. PubMed ID: 38525691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-Printed Microfluidic Device with In-line Amperometric Detection that Also Enables Multi-Modal Detection.
    Hayter EA; Castiaux AD; Martin RS
    Anal Methods; 2020 Apr; 12(15):2046-2051. PubMed ID: 32849919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocompatible High-Resolution 3D-Printed Microfluidic Devices: Integrated Cell Chemotaxis Demonstration.
    Boaks M; Roper C; Viglione M; Hooper K; Woolley AT; Christensen KA; Nordin GP
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A 3D-printed microfluidic-enabled hollow microneedle architecture for transdermal drug delivery.
    Yeung C; Chen S; King B; Lin H; King K; Akhtar F; Diaz G; Wang B; Zhu J; Sun W; Khademhosseini A; Emaminejad S
    Biomicrofluidics; 2019 Nov; 13(6):064125. PubMed ID: 31832123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D printed microchannels for sub-nL NMR spectroscopy.
    Montinaro E; Grisi M; Letizia MC; Pethö L; Gijs MAM; Guidetti R; Michler J; Brugger J; Boero G
    PLoS One; 2018; 13(5):e0192780. PubMed ID: 29742104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flattening of Diluted Species Profile via Passive Geometry in a Microfluidic Device.
    Miles M; Bhattacharjee B; Sridhar N; Fajrial AK; Ball K; Lee YC; Stowell MHB; Old WM; Ding X
    Micromachines (Basel); 2019 Nov; 10(12):. PubMed ID: 31801276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D Printing of Noncytotoxic High-Resolution Microchannels in Bisphenol-A Ethoxylate Dimethacrylate Tissue-Mimicking Materials.
    Domingo-Roca R; Gilmour L; Dobre O; Sarrigiannidis S; Sandison ME; O'Leary R; Jackson-Camargo JC; Mulvana HE
    3D Print Addit Manuf; 2023 Oct; 10(5):1101-1109. PubMed ID: 37886413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pysanky to Microfluidics: An Innovative Wax-Based Approach to Low Cost, Rapid Prototyping of Microfluidic Devices.
    Schneider PJ; Christie LB; Eadie NM; Siskar TJ; Sukhotskiy V; Koh D; Wang A; Oh KW
    Micromachines (Basel); 2024 Feb; 15(2):. PubMed ID: 38398969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-Printed Microfluidics.
    Au AK; Huynh W; Horowitz LF; Folch A
    Angew Chem Int Ed Engl; 2016 Mar; 55(12):3862-81. PubMed ID: 26854878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite Element Model of Oxygen Transport for the Design of Geometrically Complex Microfluidic Devices Used in Biological Studies.
    Sové RJ; Fraser GM; Goldman D; Ellis CG
    PLoS One; 2016; 11(11):e0166289. PubMed ID: 27829071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Stereolithographic Printing to Manufacture Monolithic Microfluidic Devices with an Extremely High Aspect Ratio.
    Chen PC; Chen PT; Vo TNA
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.